On-chip feature extraction for spike sorting in high density implantable neural recording systems

M. K. Awais, J. M. Andrew
{"title":"On-chip feature extraction for spike sorting in high density implantable neural recording systems","authors":"M. K. Awais, J. M. Andrew","doi":"10.1109/BIOCAS.2010.5709559","DOIUrl":null,"url":null,"abstract":"Modern microelectrode arrays acquire neural signals from hundreds of neurons in parallel that are subsequently processed for spike sorting. It is important to identify, extract and transmit appropriate features that allow accurate spike sorting while using minimum computational resources. This paper describes a new set of spike sorting features, explicitly framed to be computationally efficient and shown to outperform PCA based spike sorting. A hardware friendly architecture, feasible for implantation, is also presented for detecting neural spikes and extracting features to be transmitted for off chip spike classification.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Modern microelectrode arrays acquire neural signals from hundreds of neurons in parallel that are subsequently processed for spike sorting. It is important to identify, extract and transmit appropriate features that allow accurate spike sorting while using minimum computational resources. This paper describes a new set of spike sorting features, explicitly framed to be computationally efficient and shown to outperform PCA based spike sorting. A hardware friendly architecture, feasible for implantation, is also presented for detecting neural spikes and extracting features to be transmitted for off chip spike classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高密度植入式神经记录系统中脉冲分选的片上特征提取
现代微电极阵列从数百个神经元中并行获取神经信号,随后进行处理以进行尖峰分类。重要的是识别,提取和传输适当的特征,允许准确的尖峰排序,同时使用最少的计算资源。本文描述了一组新的尖峰排序特征,明确框架是计算效率高,并显示优于基于PCA的尖峰排序。此外,还提出了一种易于植入的硬件友好架构,用于检测神经尖峰并提取用于片外尖峰分类的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A nonlinear signal-specific ADC for efficient neural recording A reconfigurable neural spike recording channel with feature extraction capabilities Adaptive threshold spike detection using stationary wavelet transform for neural recording implants Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG A spike based 3D imager chip using a mixed mode encoding readout
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1