{"title":"The mechanism of parasitic oscillation in a half bridge circuit including wide band-gap semiconductor devices","authors":"Tatsuya Yanagi, H. Otake, K. Nakahara","doi":"10.1109/IMFEDK.2014.6867087","DOIUrl":null,"url":null,"abstract":"This paper focuses on revealing the mechanism of parasitic oscillation observed when SiC MOSFETs (metal-oxide-semiconductor field-effect transistors) operate in halfbridge configuration. The relatively large parasitic feed-back capacitance (Cgd) of SiC MOSFETs, especially if the transistors have a low threshold voltage, enhances unintentional turn-on of the device, entailing parasitic oscillation in a half bridge circuit. The wide-band gap semiconductor power device should possess a structure of as low Cgd as possible in addition to a device-specific circuit design, if the general advantage of wide band-gap power devices is utilized to facilitate high-speed switching.","PeriodicalId":202416,"journal":{"name":"2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","volume":"437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMFEDK.2014.6867087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper focuses on revealing the mechanism of parasitic oscillation observed when SiC MOSFETs (metal-oxide-semiconductor field-effect transistors) operate in halfbridge configuration. The relatively large parasitic feed-back capacitance (Cgd) of SiC MOSFETs, especially if the transistors have a low threshold voltage, enhances unintentional turn-on of the device, entailing parasitic oscillation in a half bridge circuit. The wide-band gap semiconductor power device should possess a structure of as low Cgd as possible in addition to a device-specific circuit design, if the general advantage of wide band-gap power devices is utilized to facilitate high-speed switching.