Application of Double Seasonal Autoregressive Integrated Moving Average (DSARIMA) for Stock Forecasting

Mega Silfiani, Farida Nur Hayati, M. Azka
{"title":"Application of Double Seasonal Autoregressive Integrated Moving Average (DSARIMA) for Stock Forecasting","authors":"Mega Silfiani, Farida Nur Hayati, M. Azka","doi":"10.32665/statkom.v2i1.1594","DOIUrl":null,"url":null,"abstract":"Background: Stock price forecasting assists investors to anticipate risks and opportunities in making prudent investments and maximizing returns.\nObjective: This study aims to identify the most accurate model for stock forecasting.\nMethods: This paper utilized the daily closing stock price of Unilever Indonesia, Tbk (UNVR) from January 1, 2018 to July 31, 202.  Double Seasonal Autoregressive Integrated Moving Average (DSARIMA), was utilized in this study. Mean Absolute Scaled Error (MASE) and Median Absolute Percentage Error (MdAPE) are used to compare forecasting accuracy.\nResults: Following conducting each model, we assessed that the best models are DSARIMAX (0,1,[4]) ([3],1,1)5(1,1,0)253, regarding MASE and MdAPE corresponding to approximately 1.423 and 0.111. The scope of this study has limitations to a test set for one-month forecast periods.\nConclusion: As stock prices rise, investors require precise forecasts. Models of forecasting must perform well. This analysis shows how the DSARIMA generate forecasts stock prices more accurately. This investigation evaluated the closing stock price of UNVR. Both MASE and MdAPE assess prediction. After analyzing each model, DSARIMAX (0,1,[4])([3],1,1)5(1,1,0)253 has the lowest MASE and MdAPE values, 1.423 and 0.111, respectively. The procedure lasted one month. Research may combine forecasts and improve their accuracy.\n ","PeriodicalId":340369,"journal":{"name":"Jurnal Statistika dan Komputasi","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Statistika dan Komputasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32665/statkom.v2i1.1594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Stock price forecasting assists investors to anticipate risks and opportunities in making prudent investments and maximizing returns. Objective: This study aims to identify the most accurate model for stock forecasting. Methods: This paper utilized the daily closing stock price of Unilever Indonesia, Tbk (UNVR) from January 1, 2018 to July 31, 202.  Double Seasonal Autoregressive Integrated Moving Average (DSARIMA), was utilized in this study. Mean Absolute Scaled Error (MASE) and Median Absolute Percentage Error (MdAPE) are used to compare forecasting accuracy. Results: Following conducting each model, we assessed that the best models are DSARIMAX (0,1,[4]) ([3],1,1)5(1,1,0)253, regarding MASE and MdAPE corresponding to approximately 1.423 and 0.111. The scope of this study has limitations to a test set for one-month forecast periods. Conclusion: As stock prices rise, investors require precise forecasts. Models of forecasting must perform well. This analysis shows how the DSARIMA generate forecasts stock prices more accurately. This investigation evaluated the closing stock price of UNVR. Both MASE and MdAPE assess prediction. After analyzing each model, DSARIMAX (0,1,[4])([3],1,1)5(1,1,0)253 has the lowest MASE and MdAPE values, 1.423 and 0.111, respectively. The procedure lasted one month. Research may combine forecasts and improve their accuracy.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双季节自回归综合移动平均线在股票预测中的应用
背景:股票价格预测可以帮助投资者预测风险和机会,从而进行谨慎的投资,实现收益最大化。目的:寻找最准确的股票预测模型。方法:本文采用联合利华印度尼西亚公司Tbk (UNVR) 2018年1月1日至2002年7月31日的每日收盘价。本研究采用双季节自回归综合移动平均线(DSARIMA)。使用平均绝对比例误差(MASE)和中位数绝对百分比误差(MdAPE)来比较预测精度。结果:在对每个模型进行分析后,我们评估出最佳模型为DSARIMAX (0,1,[4]) ([3],1,1)5(1,1,0)253, MASE和MdAPE对应约为1.423和0.111。本研究的范围仅限于一个月预测期的测试集。结论:随着股价的上涨,投资者需要精确的预测。预测模型必须表现良好。这个分析显示了DSARIMA如何更准确地预测股票价格。本次调查评估了UNVR的收盘价。MASE和MdAPE都对预测进行评估。分析各模型后,DSARIMAX(0,1,[4])([3],1,1)5(1,1,0)253的MASE和MdAPE值最低,分别为1.423和0.111。整个过程持续了一个月。研究可以结合预测并提高其准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Double Seasonal Autoregressive Integrated Moving Average (DSARIMA) for Stock Forecasting Peramalan Jumlah Wisatawan Mancanegara di Provinsi Kalimantan Timur Menggunakan Fuzzy Backpropagation Neural Network Penerapan Metode Ward Clustering Untuk Pengelompokkan Daerah Rawan Kriminalitas Di Jawa Timur Tahun 2021 Analisis Klaster Dalam Pengelompokan Kabupaten/Kota Di Provinsi Jambi Berdasarkan Penyakit Menular Menggunakan Metode K-Means Penerapan Metode Naive Bayes Classifier Untuk Klasifikasi Indeks Pembangunan Manusia Di Provinsi Jawa Timur
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1