Muhammad Arifat, Wardiana Adinda Putri, Alfin Syayirotin Mufida
{"title":"Penerapan Metode Naive Bayes Classifier Untuk Klasifikasi Indeks Pembangunan Manusia Di Provinsi Jawa Timur","authors":"Muhammad Arifat, Wardiana Adinda Putri, Alfin Syayirotin Mufida","doi":"10.32665/statkom.v2i1.1661","DOIUrl":null,"url":null,"abstract":"Latar Belakang: IPM adalah alat ukur pencapaian kualitas hidup suatu negara yang terdiri atas tiga dimensi, yaitu: kesehatan, pengetahuan, dan hidup layak. Terdapat variasi IPM yang cukup signifikan antara kota dan kabupaten. Untuk mengatasi permasalahan ini, perlu adanya klasifikasi IPM di Jawa Timur sebagai acuan pemerataan di seluruh wilayah Jawa Timur.\nTujuan : Mendapatkan hasil klasifikasi IPM di Jawa Timur menggunakan metode Naive Bayes Classifier (NBC).\nMetode : Digunakan metode kuantitatif dengan metode NBC dan software Jupyter Notebook untuk mengklasifikasikan data IPM skala nominal yang didapatkan dari BPS Provinsi Jawa Timur. Faktor-faktor yang dianalisis meliputi Pendapatan Per kapita, Angka Harapan Hidup, Harapan Lama Sekolah, Rata-rata Lama Sekolah, Produk Domestik Regional Bruto, Penduduk Miskin, Jumlah Fasilitas Kesehatan, dan Jumlah Tenaga Kesehatan dengan skala rasio.\nHasil: Metode klasifikasi NBC berhasil dipakai untuk memprediksi IPM di Jawa Timur. Data training dan testing yang optimal dengan pembagian 70% dan 30% menghasilkan akurasi 91,6%. Dari 12 data testing, model dapat memprediksi IPM dengan keakuratan 92% dan sensitivitas yang baik pada kelas Sangat Tinggi dan Tinggi.\nKesimpulan: Disimpulkan bahwa prediksi IPM di Provinsi Jawa Timur cukup akurat dengan persentase keakuratan mencapai 92%. Model juga memiliki nilai recall yang baik pada kelas Sangat Tinggi dan Tinggi serta cukup pada kelas Sedang.\n ","PeriodicalId":340369,"journal":{"name":"Jurnal Statistika dan Komputasi","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Statistika dan Komputasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32665/statkom.v2i1.1661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Latar Belakang: IPM adalah alat ukur pencapaian kualitas hidup suatu negara yang terdiri atas tiga dimensi, yaitu: kesehatan, pengetahuan, dan hidup layak. Terdapat variasi IPM yang cukup signifikan antara kota dan kabupaten. Untuk mengatasi permasalahan ini, perlu adanya klasifikasi IPM di Jawa Timur sebagai acuan pemerataan di seluruh wilayah Jawa Timur.
Tujuan : Mendapatkan hasil klasifikasi IPM di Jawa Timur menggunakan metode Naive Bayes Classifier (NBC).
Metode : Digunakan metode kuantitatif dengan metode NBC dan software Jupyter Notebook untuk mengklasifikasikan data IPM skala nominal yang didapatkan dari BPS Provinsi Jawa Timur. Faktor-faktor yang dianalisis meliputi Pendapatan Per kapita, Angka Harapan Hidup, Harapan Lama Sekolah, Rata-rata Lama Sekolah, Produk Domestik Regional Bruto, Penduduk Miskin, Jumlah Fasilitas Kesehatan, dan Jumlah Tenaga Kesehatan dengan skala rasio.
Hasil: Metode klasifikasi NBC berhasil dipakai untuk memprediksi IPM di Jawa Timur. Data training dan testing yang optimal dengan pembagian 70% dan 30% menghasilkan akurasi 91,6%. Dari 12 data testing, model dapat memprediksi IPM dengan keakuratan 92% dan sensitivitas yang baik pada kelas Sangat Tinggi dan Tinggi.
Kesimpulan: Disimpulkan bahwa prediksi IPM di Provinsi Jawa Timur cukup akurat dengan persentase keakuratan mencapai 92%. Model juga memiliki nilai recall yang baik pada kelas Sangat Tinggi dan Tinggi serta cukup pada kelas Sedang.