Phase transition oxide neuron for spiking neural networks

M. Jerry, Wei-Yu Tsai, Baihua Xie, Xueqing Li, V. Narayanan, A. Raychowdhury, S. Datta
{"title":"Phase transition oxide neuron for spiking neural networks","authors":"M. Jerry, Wei-Yu Tsai, Baihua Xie, Xueqing Li, V. Narayanan, A. Raychowdhury, S. Datta","doi":"10.1109/DRC.2016.7548503","DOIUrl":null,"url":null,"abstract":"Spiking neural networks are expected to play a vital role in realizing ultra-low power hardware for computer vision applications [1]. While the algorithmic efficiency is promising, their solid-state implementation with traditional CMOS transistors lead to area expensive solutions. Transistors are typically designed and optimized to perform as switches and do not naturally exhibit the dynamical properties of neurons. In this work, we harness the abrupt insulator-to-metal transition (IMT) in a prototypical IMT material, vanadium dioxide (VO2) [2], to experimentally demonstrate a compact integrate and fire spiking neuron [3]. Further, we show multiple spiking dynamics of the neuron relevant to implementing `winner take all' max pooling layers employed in image processing pipelines.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 74th Annual Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2016.7548503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Spiking neural networks are expected to play a vital role in realizing ultra-low power hardware for computer vision applications [1]. While the algorithmic efficiency is promising, their solid-state implementation with traditional CMOS transistors lead to area expensive solutions. Transistors are typically designed and optimized to perform as switches and do not naturally exhibit the dynamical properties of neurons. In this work, we harness the abrupt insulator-to-metal transition (IMT) in a prototypical IMT material, vanadium dioxide (VO2) [2], to experimentally demonstrate a compact integrate and fire spiking neuron [3]. Further, we show multiple spiking dynamics of the neuron relevant to implementing `winner take all' max pooling layers employed in image processing pipelines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于脉冲神经网络的氧化物相变神经元
脉冲神经网络有望在实现计算机视觉应用的超低功耗硬件方面发挥重要作用[1]。虽然算法效率很有希望,但传统CMOS晶体管的固态实现导致面积昂贵的解决方案。晶体管通常被设计和优化为充当开关,而不自然地表现出神经元的动态特性。在这项工作中,我们利用典型的绝缘体到金属的突然转变(IMT)材料,二氧化钒(VO2)[2],实验证明了一个紧凑的集成和火脉冲神经元[3]。此外,我们展示了与实现图像处理管道中使用的“赢家通吃”最大池化层相关的神经元的多个峰值动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint EMC/DRC plenary session Novel materials for next generation photonic devices True random number generation using voltage controlled spin-dice Current saturation and steep switching in graphene PN junctions using angle-dependent scattering Recent developments in mid-infrared quantum cascade lasers and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1