{"title":"Current saturation and steep switching in graphene PN junctions using angle-dependent scattering","authors":"M. Elahi, Avik W. Ghosh","doi":"10.1109/DRC.2016.7548421","DOIUrl":null,"url":null,"abstract":"Graphene's ultra-high carrier mobility (200,000cm2/Vs on hBN) [1] makes it promising for high speed applications; however the absence of a band-gap makes it hard to design logic elements out of graphene. It is possible to open a bandgap in graphene by applying strain [2] or by confining it in one direction into nanoribbons [3], but in the process bandstructure gets distorted near Dirac point and the carrier mobility decreases [4]. A recent set of papers have exploited instead the angle dependent transmission across graphene pn junctions (GPNJ) [5-9]. Since the opening angle is gate tunable, a sequence of angled junctions can turn off the electrons [10,11] using gateable momentum filtering in the absence of a band-gap (instead, the ideas use a transmission gap). In the absence of edge scattering, momentum filtering is predicted to give large ON, low OFF current and a steep subthreshold swing (SS). In this paper, we calculate the transfer (ID-VG) and output (ID-VD) characteristics of a GPNJ switch [11] and show current saturation using gate geometry alone.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 74th Annual Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2016.7548421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Graphene's ultra-high carrier mobility (200,000cm2/Vs on hBN) [1] makes it promising for high speed applications; however the absence of a band-gap makes it hard to design logic elements out of graphene. It is possible to open a bandgap in graphene by applying strain [2] or by confining it in one direction into nanoribbons [3], but in the process bandstructure gets distorted near Dirac point and the carrier mobility decreases [4]. A recent set of papers have exploited instead the angle dependent transmission across graphene pn junctions (GPNJ) [5-9]. Since the opening angle is gate tunable, a sequence of angled junctions can turn off the electrons [10,11] using gateable momentum filtering in the absence of a band-gap (instead, the ideas use a transmission gap). In the absence of edge scattering, momentum filtering is predicted to give large ON, low OFF current and a steep subthreshold swing (SS). In this paper, we calculate the transfer (ID-VG) and output (ID-VD) characteristics of a GPNJ switch [11] and show current saturation using gate geometry alone.