{"title":"Leak-Proof Packaging for GaN Chip with Controlled Thermal Spreading and Transients","authors":"Yasuo Saito, T. Aizawa, K. Wasa, Yoshiro Nogami","doi":"10.1109/BCICTS.2018.8551037","DOIUrl":null,"url":null,"abstract":"Plastic mold packaging is proposed as the first solution to make leak proof joinability between the heat spreader and plastic mold by optimization of micro-textures on the spreader. No leaks were detected after gross-leak testing. Vertically-aligned graphitic substrate (VGS) provided the second solution to control thermal spreading and transients from GaN to the spreader. A Copper-laminated VGS with stacking graphene planes in Y and Z-axes significantly reduced the channel temperature and Thermal resistance (Rth) by 40 K and 0.28 K/W than those in Cu-based composite substrate (CCS) even for the same spreader thickness of 1 mm. Since thermal diffusivity for VGS is ten times faster than CCS., temperature difference during ON/OFF intervals was reduced by 18 K between Cu-laminated VGS-packaged and CCS-packaged GaN HEMTs. The time constant of Cu-laminated VGS-packaged GaN HEMT was 2.5 ms, much longer than 0.2 ms.","PeriodicalId":272808,"journal":{"name":"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCICTS.2018.8551037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Plastic mold packaging is proposed as the first solution to make leak proof joinability between the heat spreader and plastic mold by optimization of micro-textures on the spreader. No leaks were detected after gross-leak testing. Vertically-aligned graphitic substrate (VGS) provided the second solution to control thermal spreading and transients from GaN to the spreader. A Copper-laminated VGS with stacking graphene planes in Y and Z-axes significantly reduced the channel temperature and Thermal resistance (Rth) by 40 K and 0.28 K/W than those in Cu-based composite substrate (CCS) even for the same spreader thickness of 1 mm. Since thermal diffusivity for VGS is ten times faster than CCS., temperature difference during ON/OFF intervals was reduced by 18 K between Cu-laminated VGS-packaged and CCS-packaged GaN HEMTs. The time constant of Cu-laminated VGS-packaged GaN HEMT was 2.5 ms, much longer than 0.2 ms.