An integrated thermal management solution for flat-type solar photovoltaic modules

P. Rodgers, V. Eveloy
{"title":"An integrated thermal management solution for flat-type solar photovoltaic modules","authors":"P. Rodgers, V. Eveloy","doi":"10.1109/EUROSIME.2013.6529993","DOIUrl":null,"url":null,"abstract":"Solar photovoltaics (PV) are employed for a range of distributed power generation applications in the oil and gas industry. However, despite unprecedented solar irradiation levels in the Arabian Gulf, such installations incur significant power output losses in hot and dusty (i.e., desert) ambient conditions. In this study, a prototype PV module electrical performance enhancement solution is designed, constructed and experimentally characterized that combines active thermal management and sun-tracking to reduce PV cell operating temperature while enhancing solar irradiation absorption. Both steady-state and dynamic cooling conditions are investigated to compare the effectiveness of continuous and intermittent water-cooling. Water cooling a stationary PV module using unchilled water (35-40°C) is found to be at least as effective as sun-tracking a passively-cooled module in terms of power output. Chilled water-cooling (7-20°C) produces improvements in peak electrical power output of up to 40% depending on seasonal and daily conditions, relative to passively-cooled stationary operation. In addition, dynamic (i.e., intermittent) water-cooling is sufficient to maintain high PV module electrical output.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Solar photovoltaics (PV) are employed for a range of distributed power generation applications in the oil and gas industry. However, despite unprecedented solar irradiation levels in the Arabian Gulf, such installations incur significant power output losses in hot and dusty (i.e., desert) ambient conditions. In this study, a prototype PV module electrical performance enhancement solution is designed, constructed and experimentally characterized that combines active thermal management and sun-tracking to reduce PV cell operating temperature while enhancing solar irradiation absorption. Both steady-state and dynamic cooling conditions are investigated to compare the effectiveness of continuous and intermittent water-cooling. Water cooling a stationary PV module using unchilled water (35-40°C) is found to be at least as effective as sun-tracking a passively-cooled module in terms of power output. Chilled water-cooling (7-20°C) produces improvements in peak electrical power output of up to 40% depending on seasonal and daily conditions, relative to passively-cooled stationary operation. In addition, dynamic (i.e., intermittent) water-cooling is sufficient to maintain high PV module electrical output.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平板型太阳能光伏组件的集成热管理解决方案
太阳能光伏(PV)在石油和天然气工业中广泛应用于分布式发电。然而,尽管阿拉伯湾的太阳辐照程度空前,但这种装置在炎热和多尘(即沙漠)的环境条件下产生了巨大的功率输出损失。在本研究中,设计、构建了一个原型光伏组件电性能增强方案,并进行了实验表征,该方案结合了主动热管理和太阳跟踪,以降低光伏电池的工作温度,同时增强太阳辐射吸收。研究了稳态和动态冷却条件,比较了连续水冷和间歇水冷的效果。研究发现,使用非冷冻水(35-40°C)水冷却固定式光伏组件,在功率输出方面至少与太阳跟踪被动冷却组件一样有效。相对于被动冷却的固定运行,冷冻水冷(7-20°C)根据季节和日常条件,可提高高达40%的峰值电力输出。此外,动态(即间歇性)水冷却足以维持较高的光伏组件电输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of mixed-mode delamination by cohesive zone method Resistance electric filed dependence simulation of piezoresistive silicon pressure sensor and improvement by shield layer Reliability investigation of system in package devices toward aeronautic requirements: Methodology and application Adhesion of printed circuit boards with bending and the effect of reflow cycles Bonding wire life prediction model of the power module under power cycling test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1