Stochastic Radial Basis Neural Networks

Fabio Galán-Prado, Alejandro Morán, J. Font-Rosselló, M. Roca, J. Rosselló
{"title":"Stochastic Radial Basis Neural Networks","authors":"Fabio Galán-Prado, Alejandro Morán, J. Font-Rosselló, M. Roca, J. Rosselló","doi":"10.1109/PATMOS.2019.8862129","DOIUrl":null,"url":null,"abstract":"Stochastic spiking Neural Networks (SNN) is a new neural modeling oriented to include the intrinsic stochastic processes present in the brain. One of the main advantages of this kind of modeling is that they can be easily implemented in a digital circuit, thus taking advantage of this mature technology. In this paper we propose a digital design for stochastic spiking neurons oriented to high-density hardware implementation. We compare the proposal with other neural models, comparing in terms of speed, area and precision. As is shown, the circuit proposal is able to provide competitive results when comparing with other works present in the literature.","PeriodicalId":430458,"journal":{"name":"2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PATMOS.2019.8862129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic spiking Neural Networks (SNN) is a new neural modeling oriented to include the intrinsic stochastic processes present in the brain. One of the main advantages of this kind of modeling is that they can be easily implemented in a digital circuit, thus taking advantage of this mature technology. In this paper we propose a digital design for stochastic spiking neurons oriented to high-density hardware implementation. We compare the proposal with other neural models, comparing in terms of speed, area and precision. As is shown, the circuit proposal is able to provide competitive results when comparing with other works present in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机径向基神经网络
随机脉冲神经网络(SNN)是一种新的神经建模方法,旨在将大脑中存在的固有随机过程包括在内。这种建模的主要优点之一是它们可以很容易地在数字电路中实现,从而利用了这种成熟的技术。本文提出了一种面向高密度硬件实现的随机尖峰神经元的数字化设计。我们将该方法与其他神经模型进行了比较,在速度、面积和精度方面进行了比较。如图所示,与文献中的其他作品相比,电路提案能够提供有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Static CMOS Implementation of Magnitude Comparators [PATMOS 2019 Title Page] UVM-based Verification of a Digital PLL Using SystemVerilog Minimizing Power for Neural Network Training with Logarithm-Approximate Floating-Point Multiplier Stochastic Radial Basis Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1