Research on Forecasting Method for Effluent Ammonia Nitrogen Concentration Based on GRA-TCN

Li Kang, Yang Cui-li, Qiao Jun-fei
{"title":"Research on Forecasting Method for Effluent Ammonia Nitrogen Concentration Based on GRA-TCN","authors":"Li Kang, Yang Cui-li, Qiao Jun-fei","doi":"10.1109/IAI53119.2021.9619251","DOIUrl":null,"url":null,"abstract":"Aiming at the characteristics of high coupling degree, strong nonlinearity, and serious time delay in the measurement of ammonia nitrogen concentration in wastewater treatment process (WWTP), a prediction model of ammonia nitrogen concentration based on gray relational analysis (GRA) and time convolution network (TCN) was proposed. Firstly, based on the relevant water quality parameters collected in WWTP, the grey correlation analysis method was used to find out other characteristic variables highly related to the ammonia nitrogen concentration. Then, a new group of multivariate time series data was constructed by using the sliding window method. Finally, based on the advantages of the time convolution network in processing time series data, such as simple, flexible, and easy to parallel, the constructed time series data were modeled to predict the concentration of effluent ammonia-nitrogen. To verify the validity of the model, the predicted results were compared with the other four models. The experimental results show that the ammonia-nitrogen concentration prediction model based on GRA and TCN has good prediction performance, which is helpful to realize the accurate prediction of effluent ammonia-nitrogen concentration. At the same time, it can also provide timely and effective guidance for the control and optimization of the wastewater treatment process.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Aiming at the characteristics of high coupling degree, strong nonlinearity, and serious time delay in the measurement of ammonia nitrogen concentration in wastewater treatment process (WWTP), a prediction model of ammonia nitrogen concentration based on gray relational analysis (GRA) and time convolution network (TCN) was proposed. Firstly, based on the relevant water quality parameters collected in WWTP, the grey correlation analysis method was used to find out other characteristic variables highly related to the ammonia nitrogen concentration. Then, a new group of multivariate time series data was constructed by using the sliding window method. Finally, based on the advantages of the time convolution network in processing time series data, such as simple, flexible, and easy to parallel, the constructed time series data were modeled to predict the concentration of effluent ammonia-nitrogen. To verify the validity of the model, the predicted results were compared with the other four models. The experimental results show that the ammonia-nitrogen concentration prediction model based on GRA and TCN has good prediction performance, which is helpful to realize the accurate prediction of effluent ammonia-nitrogen concentration. At the same time, it can also provide timely and effective guidance for the control and optimization of the wastewater treatment process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GRA-TCN的出水氨氮浓度预测方法研究
针对污水处理过程中氨氮浓度测量耦合程度高、非线性强、时滞严重的特点,提出了一种基于灰色关联分析(GRA)和时间卷积网络(TCN)的氨氮浓度预测模型。首先,基于收集到的污水处理厂相关水质参数,运用灰色关联分析法找出与氨氮浓度高度相关的其他特征变量。然后,采用滑动窗口法构造了一组新的多元时间序列数据。最后,利用时间卷积网络处理时间序列数据简单、灵活、易于并行等优点,对构建的时间序列数据进行建模,预测出水氨氮浓度。为了验证模型的有效性,将预测结果与其他四种模型进行了比较。实验结果表明,基于GRA和TCN的氨氮浓度预测模型具有良好的预测性能,有助于实现出水氨氮浓度的准确预测。同时,还可以为废水处理过程的控制和优化提供及时有效的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on self-maintenance strategy of CNC machine tools based on case-based reasoning An Improved RRT* Algorithm Combining Motion Constraint and Artificial Potential Field for Robot-Assisted Flexible Needle Insertion in 3D Environment Relative Stability Analysis Method of Systems Based on Goal Seek Operation Optimization of Park Integrated Energy System Considering the Response of Electricity and Cooling Demand Privacy-Preserving Push-sum Average Consensus Algorithm over Directed Graph Via State Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1