Multi-resolution Cascaded Network with Depth-similar Residual Module for Real-time Semantic Segmentation on RGB-D Images

Zhijia Zheng, Donghan Xie, Chunlin Chen, Zhangqing Zhu
{"title":"Multi-resolution Cascaded Network with Depth-similar Residual Module for Real-time Semantic Segmentation on RGB-D Images","authors":"Zhijia Zheng, Donghan Xie, Chunlin Chen, Zhangqing Zhu","doi":"10.1109/ICNSC48988.2020.9238079","DOIUrl":null,"url":null,"abstract":"Multi-class indoor semantic segmentation using deep fully convolutional neural networks on RGB images has been widely used in scene parsing and human-computer interaction. Due to the wide application of depth information sensors, we can get more understanding of geographic location information from the depth information channel, but it also leads to high computational cost and memory usage. In this paper, we present a real-time deep neural network for semantic segmentation tasks on RGB-D images. First, we use an intuitive and efficient convolution operation to approximate the depth information to the pixel operation without adding additional parameters, which can be easily integrated into the deep convolutional neural network. Then, we use a multi-resolution branching structure and train the network with appropriate label guidance as the loss function to obtain a high-quality performance of semantic segmentation. The proposed approach demonstrates real-time inference on datasets NYUv2 and SUN RGB-D with a good balance of accuracy and speed on a single GPU card.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Multi-class indoor semantic segmentation using deep fully convolutional neural networks on RGB images has been widely used in scene parsing and human-computer interaction. Due to the wide application of depth information sensors, we can get more understanding of geographic location information from the depth information channel, but it also leads to high computational cost and memory usage. In this paper, we present a real-time deep neural network for semantic segmentation tasks on RGB-D images. First, we use an intuitive and efficient convolution operation to approximate the depth information to the pixel operation without adding additional parameters, which can be easily integrated into the deep convolutional neural network. Then, we use a multi-resolution branching structure and train the network with appropriate label guidance as the loss function to obtain a high-quality performance of semantic segmentation. The proposed approach demonstrates real-time inference on datasets NYUv2 and SUN RGB-D with a good balance of accuracy and speed on a single GPU card.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度相似残差模块的RGB-D图像实时语义分割多分辨率级联网络
基于深度全卷积神经网络的RGB图像多类室内语义分割已广泛应用于场景分析和人机交互。由于深度信息传感器的广泛应用,我们可以从深度信息通道中获得更多的地理位置信息,但这也导致了较高的计算成本和内存占用。本文提出了一种用于RGB-D图像语义分割任务的实时深度神经网络。首先,我们使用直观高效的卷积运算,在不添加额外参数的情况下,将深度信息近似为像素运算,可以很容易地集成到深度卷积神经网络中。然后,我们使用多分辨率分支结构,并以适当的标签引导作为损失函数来训练网络,以获得高质量的语义分割性能。该方法在单个GPU卡上演示了对NYUv2和SUN RGB-D数据集的实时推理,并实现了精度和速度的良好平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1