Muller C-elements based on minority-3 functions for ultra low voltage supplies

Hans Kristian Otnes Berge, Amir Hasanbegovic, S. Aunet
{"title":"Muller C-elements based on minority-3 functions for ultra low voltage supplies","authors":"Hans Kristian Otnes Berge, Amir Hasanbegovic, S. Aunet","doi":"10.1109/DDECS.2011.5783079","DOIUrl":null,"url":null,"abstract":"Multiobjective optimization taking area, power consumption and robustness into account was used to pick two implementations of the minority-3 function as building blocks to implement Muller C-elements. According to our simulations, the generally better among the two implementations was a 12 transistor implementation based on a 10 transistor minority-3 gate, when compared to a 24 transistor implementation based on 2-input nand, 2-input nor and invert functions. For room temperature and a supply voltage of 150mV, the simulated delays for the 12T and 24T implementations were 16.2 µs and 18.5 µs, respectively. The mean static power consumption figures were for the same conditions 2.6pW and 7.4pW, for the 12T and 24T implementations respectively. Switching energy was also simulated for a 150mV supply voltage. The switching energy for the 12T version of the Muller C-element was almost 44% lower compared to the 24T implementation. We also report delay, power and energy for a supply voltage of 300mV.","PeriodicalId":231389,"journal":{"name":"14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2011.5783079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Multiobjective optimization taking area, power consumption and robustness into account was used to pick two implementations of the minority-3 function as building blocks to implement Muller C-elements. According to our simulations, the generally better among the two implementations was a 12 transistor implementation based on a 10 transistor minority-3 gate, when compared to a 24 transistor implementation based on 2-input nand, 2-input nor and invert functions. For room temperature and a supply voltage of 150mV, the simulated delays for the 12T and 24T implementations were 16.2 µs and 18.5 µs, respectively. The mean static power consumption figures were for the same conditions 2.6pW and 7.4pW, for the 12T and 24T implementations respectively. Switching energy was also simulated for a 150mV supply voltage. The switching energy for the 12T version of the Muller C-element was almost 44% lower compared to the 24T implementation. We also report delay, power and energy for a supply voltage of 300mV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于少数派3功能的穆勒c -元件,用于超低电压电源
采用考虑面积、功耗和鲁棒性的多目标优化方法,选取两种minority-3函数实现作为构建块,实现Muller c元。根据我们的模拟,与基于2输入非和、2输入非和反相功能的24晶体管实现相比,两种实现中通常更好的是基于10晶体管少数派3门的12晶体管实现。在室温和150mV供电电压下,12T和24T实现的模拟延迟分别为16.2µs和18.5µs。在相同条件下,12T和24T实现的平均静态功耗分别为2.6pW和7.4pW。并对150mV电源电压下的开关能量进行了仿真。与24T版本相比,12T版本的Muller C-element的开关能量降低了近44%。我们还报告了供电电压为300mV时的延迟、功率和能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioral model of TRNG based on oscillator rings implemented in FPGA CAD tool for PLL Design High-performance hardware accelerators for sorting and managing priorities Defect-oriented module-level fault diagnosis in digital circuits Design-for-Test method for high-speed ADCs: Behavioral description and optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1