An adaptive approach to non-parametric estimation of dynamic probability density functions

Cristian Pana, S. Severi, G. Abreu
{"title":"An adaptive approach to non-parametric estimation of dynamic probability density functions","authors":"Cristian Pana, S. Severi, G. Abreu","doi":"10.1109/WPNC.2016.7822839","DOIUrl":null,"url":null,"abstract":"Accurate and flexible probability density estimation is fundamental in machine learning tasks, in classification and routine data analyses applications. In this paper we propose an adaptive version of the Histogram Trend Filtering (HTF), which is a relatively new method used for non-parametric density estimation. This technique enjoys low computational complexity, while being able to automatically detect abrupt changes in the underlying dynamics of the estimated distribution. Therefore, it can deal with estimating both stationary and non-stationary distributions.","PeriodicalId":148664,"journal":{"name":"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)","volume":"552 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2016.7822839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Accurate and flexible probability density estimation is fundamental in machine learning tasks, in classification and routine data analyses applications. In this paper we propose an adaptive version of the Histogram Trend Filtering (HTF), which is a relatively new method used for non-parametric density estimation. This technique enjoys low computational complexity, while being able to automatically detect abrupt changes in the underlying dynamics of the estimated distribution. Therefore, it can deal with estimating both stationary and non-stationary distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态概率密度函数非参数估计的自适应方法
准确灵活的概率密度估计是机器学习任务、分类和常规数据分析应用的基础。本文提出了直方图趋势滤波(HTF)的自适应版本,这是一种用于非参数密度估计的相对较新的方法。该技术具有较低的计算复杂度,同时能够自动检测估计分布的底层动态中的突变。因此,它可以同时处理平稳分布和非平稳分布的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fundamental limits in RSSI-based direction-of-arrival estimation Setting up an Ultra-Wideband positioning system using off-the-shelf components An adaptive approach to non-parametric estimation of dynamic probability density functions Probabilistic occupancy grid map building for Neobotix MP500 robot Comparison of wired and wireless synchronization with clock drift compensation suited for U-TDoA localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1