Radial basis neural network adaptive controller for servomotor

M. Strefezza, Y. Dote
{"title":"Radial basis neural network adaptive controller for servomotor","authors":"M. Strefezza, Y. Dote","doi":"10.1109/ISIE.1993.268712","DOIUrl":null,"url":null,"abstract":"Neuro controllers have recently been applied to practical systems. The commonest network in these applications has been the multilayer perceptron trained by backpropagation. The objective of this paper is to present a new neuro control scheme for servomotors. An important feature of the proposed control scheme is that the radial basis function network, instead of normal backpropagation neural net, is used to tune a conventional controller. Another goal is to introduce a two layer radial basis network structure to be trained with the novel algorithm. Simulations are performed with both radial basis function networks showing that the proposed neuro controller can be trained in a short period of time and is robust.<<ETX>>","PeriodicalId":267349,"journal":{"name":"ISIE '93 - Budapest: IEEE International Symposium on Industrial Electronics Conference Proceedings","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISIE '93 - Budapest: IEEE International Symposium on Industrial Electronics Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.1993.268712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Neuro controllers have recently been applied to practical systems. The commonest network in these applications has been the multilayer perceptron trained by backpropagation. The objective of this paper is to present a new neuro control scheme for servomotors. An important feature of the proposed control scheme is that the radial basis function network, instead of normal backpropagation neural net, is used to tune a conventional controller. Another goal is to introduce a two layer radial basis network structure to be trained with the novel algorithm. Simulations are performed with both radial basis function networks showing that the proposed neuro controller can be trained in a short period of time and is robust.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伺服电机径向基神经网络自适应控制器
神经控制器最近被应用到实际系统中。在这些应用中最常见的网络是由反向传播训练的多层感知器。本文的目的是提出一种新的伺服电机神经控制方案。该控制方案的一个重要特点是采用径向基函数网络代替传统的反向传播神经网络对传统控制器进行整定。另一个目标是引入一个两层径向基网络结构,用新算法进行训练。用两种径向基函数网络进行了仿真,结果表明所提出的神经控制器可以在短时间内完成训练,并且具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel PWM strategy for direct self-control of inverter-fed induction motors Comparison of two types of the tolerance band controlled converters Cartesian base predictive control of robotic manipulators Fuzzy controller for field-oriented robot drive with induction motor On the capability of job-group loading in FMS management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1