SIMFAC-A New Forecasting Method for Sporadic Time Series

K. Spicher, Boxing Li, D. Fang
{"title":"SIMFAC-A New Forecasting Method for Sporadic Time Series","authors":"K. Spicher, Boxing Li, D. Fang","doi":"10.2991/ICMEIT-19.2019.48","DOIUrl":null,"url":null,"abstract":"This essay relates mainly to sporadic FC (forecasting) methods and error measures. The existing related FC methods of sporadic time series (STS), including the SES (Simple Exponential Smoothing), Croston’ s / SBA method and patented WSS method as well as two applicable error metrics APE and THEIL'S U are introduced briefly. Then the focus is laid on the analysis and presentation of a new forecasting yet unpublished method, SIMFAC (1), which is dedicated to STS and includes a new error metric, MEM (Matching Event Metric). For a more comprehensive comparison among methods, Cosine Similarity (CS) metric, will be introduced and applied in this essay.","PeriodicalId":223458,"journal":{"name":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ICMEIT-19.2019.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This essay relates mainly to sporadic FC (forecasting) methods and error measures. The existing related FC methods of sporadic time series (STS), including the SES (Simple Exponential Smoothing), Croston’ s / SBA method and patented WSS method as well as two applicable error metrics APE and THEIL'S U are introduced briefly. Then the focus is laid on the analysis and presentation of a new forecasting yet unpublished method, SIMFAC (1), which is dedicated to STS and includes a new error metric, MEM (Matching Event Metric). For a more comprehensive comparison among methods, Cosine Similarity (CS) metric, will be introduced and applied in this essay.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的离散时间序列预测方法
本文主要涉及零星的FC(预测)方法和误差测量。简要介绍了现有的离散时间序列(STS)的相关FC方法,包括简单指数平滑法(SES)、Croston’s / SBA法和专利WSS法,以及两种适用的误差度量APE和THEIL’s U。然后,重点放在分析和介绍一种新的预测方法,SIMFAC(1),这是专门针对STS的,包括一个新的误差度量,MEM(匹配事件度量)。为了在方法之间进行更全面的比较,余弦相似度(CS)度量,将在本文中介绍和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feedback-Based Scheduling for Load-Balanced Crosspoint Buffered Crossbar Switches Research on Traffic Congestion Resolution Mechanism based on Genetic Algorithm and Multi-Agent Decentralized Location Privacy Protection Method of Offset Grid Real-Time Bidding by Proportional Control in Display Advertising Simulation Analysis of Friction and Wear of New TiAl based Alloy Joint Bearings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1