Artificial finger skin having ridges and distributed tactile sensors used for grasp force control

D. Yamada, T. Maeno, Yoji Yamada
{"title":"Artificial finger skin having ridges and distributed tactile sensors used for grasp force control","authors":"D. Yamada, T. Maeno, Yoji Yamada","doi":"10.1109/IROS.2001.976249","DOIUrl":null,"url":null,"abstract":"An artificial elastic finger skin for robot fingers was developed for controlling the grasp force when the weight and friction coefficient of the grasped object are unknown. The elastic finger skin has ridges at the surface to divide the stick/slip area. It also has a pair of tactile sensors embedded per one ridge similar to human fingertips. The surface of the whole finger is curved so that the reaction force can be distributed. A finite element (FE) model of the elastic finger skin was developed to perform a dynamic contact analysis using the FE method in order to design the elastic finger skin. The elastic finger skin was then constructed. It was confirmed by calculation and experiment that the incipient slippage of the ridge that occurs near the edge of contact area can be detected. This result is useful for controlling the grasping force when the weight and friction coefficient between the elastic finger skin and grasping object are unknown.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.976249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

Abstract

An artificial elastic finger skin for robot fingers was developed for controlling the grasp force when the weight and friction coefficient of the grasped object are unknown. The elastic finger skin has ridges at the surface to divide the stick/slip area. It also has a pair of tactile sensors embedded per one ridge similar to human fingertips. The surface of the whole finger is curved so that the reaction force can be distributed. A finite element (FE) model of the elastic finger skin was developed to perform a dynamic contact analysis using the FE method in order to design the elastic finger skin. The elastic finger skin was then constructed. It was confirmed by calculation and experiment that the incipient slippage of the ridge that occurs near the edge of contact area can be detected. This result is useful for controlling the grasping force when the weight and friction coefficient between the elastic finger skin and grasping object are unknown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人造手指皮肤有脊和分布式触觉传感器用于抓握力控制
为了在被抓物体的重量和摩擦系数未知的情况下控制抓握力,研制了一种机器人手指人造弹性指皮。弹性指皮的表面有脊状突起,用以划分粘滑区。它还在每根脊上嵌入了一对触觉传感器,类似于人类的指尖。整个手指的表面是弯曲的,这样反作用力可以被分配。建立弹性指皮有限元模型,利用有限元方法对弹性指皮进行动态接触分析,为弹性指皮的设计提供依据。然后构建弹性手指皮肤。通过计算和实验证实,可以检测到发生在接触区边缘附近的脊的初始滑移。该结果可用于在弹性指皮与抓握物体的重量和摩擦系数未知的情况下控制抓握力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial finger skin having ridges and distributed tactile sensors used for grasp force control Human-robot cooperative manipulation with motion estimation Integration of constraint logic programming and artificial neural networks for driving robots Simultaneous design of morphology of body, neural systems and adaptability to environment of multi-link-type locomotive robots using genetic programming Effects of limited bandwidth communications channels on the control of multiple robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1