Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)最新文献
Pub Date : 2002-04-20DOI: 10.1109/IROS.2001.976249
D. Yamada, T. Maeno, Yoji Yamada
An artificial elastic finger skin for robot fingers was developed for controlling the grasp force when the weight and friction coefficient of the grasped object are unknown. The elastic finger skin has ridges at the surface to divide the stick/slip area. It also has a pair of tactile sensors embedded per one ridge similar to human fingertips. The surface of the whole finger is curved so that the reaction force can be distributed. A finite element (FE) model of the elastic finger skin was developed to perform a dynamic contact analysis using the FE method in order to design the elastic finger skin. The elastic finger skin was then constructed. It was confirmed by calculation and experiment that the incipient slippage of the ridge that occurs near the edge of contact area can be detected. This result is useful for controlling the grasping force when the weight and friction coefficient between the elastic finger skin and grasping object are unknown.
{"title":"Artificial finger skin having ridges and distributed tactile sensors used for grasp force control","authors":"D. Yamada, T. Maeno, Yoji Yamada","doi":"10.1109/IROS.2001.976249","DOIUrl":"https://doi.org/10.1109/IROS.2001.976249","url":null,"abstract":"An artificial elastic finger skin for robot fingers was developed for controlling the grasp force when the weight and friction coefficient of the grasped object are unknown. The elastic finger skin has ridges at the surface to divide the stick/slip area. It also has a pair of tactile sensors embedded per one ridge similar to human fingertips. The surface of the whole finger is curved so that the reaction force can be distributed. A finite element (FE) model of the elastic finger skin was developed to perform a dynamic contact analysis using the FE method in order to design the elastic finger skin. The elastic finger skin was then constructed. It was confirmed by calculation and experiment that the incipient slippage of the ridge that occurs near the edge of contact area can be detected. This result is useful for controlling the grasping force when the weight and friction coefficient between the elastic finger skin and grasping object are unknown.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116820016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-12-01DOI: 10.1109/IROS.2001.976363
K. Takemura, Dai Harada, Takashi Maeno
Master-slave active robot hands and endoscopes, which provide dexterous manipulations and wide views like human hands and eyes, are required to be constructed. We have previously developed a multi-DOF ultrasonic motor consisting of a spherical rotor and a bar-shaped stator. The rotor rotates around three perpendicular axes using three natural vibration modes of the stator. In this study, a multi-DOF unilateral master-slave system using the multi-DOF ultrasonic motor is developed. Master and slave arms for the system have similar configurations, so that an operator can easily handle the master-slave system. First, driving characteristics of the multi-DOF ultrasonic motor are clarified experimentally and analytically in order to design the slave arm and its controller. Next, the master-slave arms and the unilateral feedback controller for the master-slave system are developed. Finally, the motion control tests of the system are performed to show the applicability of the master-slave system.
{"title":"A master-slave system using a multi-DOF ultrasonic motor and its controller designed considering measured and simulated driving characteristics","authors":"K. Takemura, Dai Harada, Takashi Maeno","doi":"10.1109/IROS.2001.976363","DOIUrl":"https://doi.org/10.1109/IROS.2001.976363","url":null,"abstract":"Master-slave active robot hands and endoscopes, which provide dexterous manipulations and wide views like human hands and eyes, are required to be constructed. We have previously developed a multi-DOF ultrasonic motor consisting of a spherical rotor and a bar-shaped stator. The rotor rotates around three perpendicular axes using three natural vibration modes of the stator. In this study, a multi-DOF unilateral master-slave system using the multi-DOF ultrasonic motor is developed. Master and slave arms for the system have similar configurations, so that an operator can easily handle the master-slave system. First, driving characteristics of the multi-DOF ultrasonic motor are clarified experimentally and analytically in order to design the slave arm and its controller. Next, the master-slave arms and the unilateral feedback controller for the master-slave system are developed. Finally, the motion control tests of the system are performed to show the applicability of the master-slave system.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133836793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-12-01DOI: 10.1109/IROS.2001.976301
K. Ishikawa, T. Fujinami, A. Sakurai
We propose a robot architecture to integrate symbolic and non-symbolic information processings. Artificial neural networks (ANN) are quick, flexible and robust. Symbolic processing is on the other hand comprehensible, effective, controllable, and consistent. To integrate symbolic and non-symbolic methods, we consider the relation between a robot and its environment as constraints. To describe and solve such constraints we turn to constraint logic programming (CLP). To construct a robot that works in the complex environment, CLP and ANN are integrated into a unified framework such that CLP evaluates the behavior candidates proposed by ANN according to the constraints and ANN learns adequate behavior according to evaluations by CLP. We implemented the decision process in our robot that drove through a test course as we expected.
{"title":"Integration of constraint logic programming and artificial neural networks for driving robots","authors":"K. Ishikawa, T. Fujinami, A. Sakurai","doi":"10.1109/IROS.2001.976301","DOIUrl":"https://doi.org/10.1109/IROS.2001.976301","url":null,"abstract":"We propose a robot architecture to integrate symbolic and non-symbolic information processings. Artificial neural networks (ANN) are quick, flexible and robust. Symbolic processing is on the other hand comprehensible, effective, controllable, and consistent. To integrate symbolic and non-symbolic methods, we consider the relation between a robot and its environment as constraints. To describe and solve such constraints we turn to constraint logic programming (CLP). To construct a robot that works in the complex environment, CLP and ANN are integrated into a unified framework such that CLP evaluates the behavior candidates proposed by ANN according to the constraints and ANN learns adequate behavior according to evaluations by CLP. We implemented the decision process in our robot that drove through a test course as we expected.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122931230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-12-01DOI: 10.1109/IROS.2001.976403
Y. Maeda, T. Hara, T. Arai
A control method of robots for human-robot cooperative manipulation is investigated. We propose estimating human motion using the minimum jerk model for smooth cooperation. Using a nonlinear least-squares method, we identify two parameters of the minimum jerk model in real-time. The estimated position of the human hand is used to determine the desired position of the end-effector of the manipulator in virtual compliance control. The effectiveness of the proposed method is verified by experimentation with an industrial 6-degree-of-freedom manipulator. Energy transfer in cooperative manipulation is studied for quantitative evaluation of achieved cooperation from the viewpoint of adaptation theory.
{"title":"Human-robot cooperative manipulation with motion estimation","authors":"Y. Maeda, T. Hara, T. Arai","doi":"10.1109/IROS.2001.976403","DOIUrl":"https://doi.org/10.1109/IROS.2001.976403","url":null,"abstract":"A control method of robots for human-robot cooperative manipulation is investigated. We propose estimating human motion using the minimum jerk model for smooth cooperation. Using a nonlinear least-squares method, we identify two parameters of the minimum jerk model in real-time. The estimated position of the human hand is used to determine the desired position of the end-effector of the manipulator in virtual compliance control. The effectiveness of the proposed method is verified by experimentation with an industrial 6-degree-of-freedom manipulator. Energy transfer in cooperative manipulation is studied for quantitative evaluation of achieved cooperation from the viewpoint of adaptation theory.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115446028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-12-01DOI: 10.1109/IROS.2001.976410
K. Endo, T. Maeno
In this paper, morphology of body and neural systems that define the locomotion of multilinked locomotive robots that can adapt to changes in environment are designed using the evolutionary computation. The morphology of the body and neural systems have a close relationship to each other. The model of the robot is designed so that the morphology of the body and neural systems emerge simultaneously. The morphology of the body and neural systems are generated using a genetic programming. The tasks are that the robots move on ground including hills of different heights in the two dimensional lateral simulated world under the effect of gravity. The robots are evaluated based both on a moving distance and an efficiency. As a result, various combinations between the morphology of the body and neural systems of the robots were emerged. The evolved robots were able to go over hills which they had not experienced.
{"title":"Simultaneous design of morphology of body, neural systems and adaptability to environment of multi-link-type locomotive robots using genetic programming","authors":"K. Endo, T. Maeno","doi":"10.1109/IROS.2001.976410","DOIUrl":"https://doi.org/10.1109/IROS.2001.976410","url":null,"abstract":"In this paper, morphology of body and neural systems that define the locomotion of multilinked locomotive robots that can adapt to changes in environment are designed using the evolutionary computation. The morphology of the body and neural systems have a close relationship to each other. The model of the robot is designed so that the morphology of the body and neural systems emerge simultaneously. The morphology of the body and neural systems are generated using a genetic programming. The tasks are that the robots move on ground including hills of different heights in the two dimensional lateral simulated world under the effect of gravity. The robots are evaluated based both on a moving distance and an efficiency. As a result, various combinations between the morphology of the body and neural systems of the robots were emerged. The evolved robots were able to go over hills which they had not experienced.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123183501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-12-01DOI: 10.1109/IROS.2001.976382
M. Svinin, K. Ohta, Zhiwei Luo, S. Hosoe
Deals with a crank rotation task. The task requires coordinated movements of arm links without developing excessive internal forces. This research is directed, mainly, to the understanding of comfortable human movements constrained by the external environment. To get a deeper insight into the crank rotation task, we develop a mathematical model and analyze a weighted minimum norm muscle force distribution scheme that can be used in the resolution of the force redundancy. Analysis of experimental data shows that in comfortable motions a human is likely to modulate the rotational stiffness of the crank. This gives an additional constraint that can be used in the resolution of the force redundancy by optimization techniques.
{"title":"Understanding of human movements in crank rotation","authors":"M. Svinin, K. Ohta, Zhiwei Luo, S. Hosoe","doi":"10.1109/IROS.2001.976382","DOIUrl":"https://doi.org/10.1109/IROS.2001.976382","url":null,"abstract":"Deals with a crank rotation task. The task requires coordinated movements of arm links without developing excessive internal forces. This research is directed, mainly, to the understanding of comfortable human movements constrained by the external environment. To get a deeper insight into the crank rotation task, we develop a mathematical model and analyze a weighted minimum norm muscle force distribution scheme that can be used in the resolution of the force redundancy. Analysis of experimental data shows that in comfortable motions a human is likely to modulate the rotational stiffness of the crank. This gives an additional constraint that can be used in the resolution of the force redundancy by optimization techniques.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132396433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-12-01DOI: 10.1109/IROS.2001.973385
P. Rybski, S. Stoeter, Maria L. Gini, Dean Frederick Hougen, N. Papanikolopoulos
We describe a distributed software system for controlling a group of miniature robots using a very low capacity communication system. Space and power limitations on the miniature robots drastically restrict the capacity of the communication system and require sharing bandwidth and other resources among the robots. We have developed a process management/scheduling system that dynamically assigns resources to each robot in an attempt to maximize the utilization of the available resources while still maintaining a priori behavior priorities. We describe a surveillance task in which the robots patrol an area and watch for motion, and present experimental results.
{"title":"Effects of limited bandwidth communications channels on the control of multiple robots","authors":"P. Rybski, S. Stoeter, Maria L. Gini, Dean Frederick Hougen, N. Papanikolopoulos","doi":"10.1109/IROS.2001.973385","DOIUrl":"https://doi.org/10.1109/IROS.2001.973385","url":null,"abstract":"We describe a distributed software system for controlling a group of miniature robots using a very low capacity communication system. Space and power limitations on the miniature robots drastically restrict the capacity of the communication system and require sharing bandwidth and other resources among the robots. We have developed a process management/scheduling system that dynamically assigns resources to each robot in an attempt to maximize the utilization of the available resources while still maintaining a priori behavior priorities. We describe a surveillance task in which the robots patrol an area and watch for motion, and present experimental results.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124485534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-12-01DOI: 10.1109/IROS.2001.973407
M. Kumon, T. Nakata, N. Adachi
Biped locomotion has two characteristics: 1) repeating impact at the moment when the foot contacts with the terrain, 2) limitation to the torque of the ankle. The second is required in order to make the foot of the supporting leg stay on the terrain. Since the impulsive effect can be a disturbance which makes the robot fall down, the controller of the biped robot is required to make the undesired effect of the impulsive phenomenon as small as possible. Although it is common to design the controller with a high-gain feedback in order to eliminate the disturbance, the torque of the ankle is not limited. In the paper, a control method is proposed so that the system with impact is stabilized with limited inputs. A simple biped model controlled by the proposed controller is simulated numerically and the result shows the efficiency of the method.
{"title":"Biped gait synthesis based on dynamic parametrization","authors":"M. Kumon, T. Nakata, N. Adachi","doi":"10.1109/IROS.2001.973407","DOIUrl":"https://doi.org/10.1109/IROS.2001.973407","url":null,"abstract":"Biped locomotion has two characteristics: 1) repeating impact at the moment when the foot contacts with the terrain, 2) limitation to the torque of the ankle. The second is required in order to make the foot of the supporting leg stay on the terrain. Since the impulsive effect can be a disturbance which makes the robot fall down, the controller of the biped robot is required to make the undesired effect of the impulsive phenomenon as small as possible. Although it is common to design the controller with a high-gain feedback in order to eliminate the disturbance, the torque of the ankle is not limited. In the paper, a control method is proposed so that the system with impact is stabilized with limited inputs. A simple biped model controlled by the proposed controller is simulated numerically and the result shows the efficiency of the method.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131734930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-11-29DOI: 10.1109/IROS.2001.976425
I. Nesnas, R. Volpe, T. Estlin, H. Nayar, R. Petras, D. Mutz
We present an overview of the CLARAty architecture which aims at developing reusable software components for robotic systems. These components are to support autonomy software which plans and schedules robot activities. CLARAty modifies the conventional 3-level robotic architecture into a 2-layered design: the functional layer and the decision layer. The former provides a representation of the system components and an implementation of their functionalities. The latter is the decision-making engine that drives the former. It globally reasons about the goals, system resources, and system state. The functional layer is composed of a set of interrelated object-oriented hierarchies consisting of active and passive objects that represent the system abstraction levels. We present an overview of the design of the functional layer. It is decomposed into a set of reusable core components and a set of extended components that adapt the reusable set to different hardware implementations. The reusable components provide interface definitions and implementations of basic functionality, provide local executive capabilities, manage local resources, and support decision layer queries.
{"title":"Toward developing reusable software components for robotic applications","authors":"I. Nesnas, R. Volpe, T. Estlin, H. Nayar, R. Petras, D. Mutz","doi":"10.1109/IROS.2001.976425","DOIUrl":"https://doi.org/10.1109/IROS.2001.976425","url":null,"abstract":"We present an overview of the CLARAty architecture which aims at developing reusable software components for robotic systems. These components are to support autonomy software which plans and schedules robot activities. CLARAty modifies the conventional 3-level robotic architecture into a 2-layered design: the functional layer and the decision layer. The former provides a representation of the system components and an implementation of their functionalities. The latter is the decision-making engine that drives the former. It globally reasons about the goals, system resources, and system state. The functional layer is composed of a set of interrelated object-oriented hierarchies consisting of active and passive objects that represent the system abstraction levels. We present an overview of the design of the functional layer. It is decomposed into a set of reusable core components and a set of extended components that adapt the reusable set to different hardware implementations. The reusable components provide interface definitions and implementations of basic functionality, provide local executive capabilities, manage local resources, and support decision layer queries.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130638016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-10-29DOI: 10.1109/IROS.2001.973384
Wenli Zhou, A. Hui, W. Li, N. Xi
The ability to manipulate and control biological cells with reflective-force information is a key technology necessary for many new applications in bio-MEMS, but is currently lacking in all cellular manipulators. We report our preliminary experimental work in using an ionic conducting polymer film (ICPF) to develop a biological cellular robotic gripper with force sensing capability. ICPF actuators are able to give large deflection with small input voltage (/spl sim/5V) in aqueous environments, and also able to give relatively large output voltage due to deflection by mechanical forces. Thus, ICPF actuators are investigated as possible cellular force-reflection controlled manipulators in our work. Individual multi-finger grippers with dimensions of 200/spl mu/m /spl times/ 200/spl mu/m /spl times/ 3000/spl mu/m for each finger were realized. We report on the design, fabrication procedures, and operating performance of our ICPF actuators. Further development in the reduction of size of these actuators will enable effective force-feedback control of underwater micro objects and lead to new frontiers in cellular manipulation.
{"title":"Development of a force-reflection controlled micro underwater actuator","authors":"Wenli Zhou, A. Hui, W. Li, N. Xi","doi":"10.1109/IROS.2001.973384","DOIUrl":"https://doi.org/10.1109/IROS.2001.973384","url":null,"abstract":"The ability to manipulate and control biological cells with reflective-force information is a key technology necessary for many new applications in bio-MEMS, but is currently lacking in all cellular manipulators. We report our preliminary experimental work in using an ionic conducting polymer film (ICPF) to develop a biological cellular robotic gripper with force sensing capability. ICPF actuators are able to give large deflection with small input voltage (/spl sim/5V) in aqueous environments, and also able to give relatively large output voltage due to deflection by mechanical forces. Thus, ICPF actuators are investigated as possible cellular force-reflection controlled manipulators in our work. Individual multi-finger grippers with dimensions of 200/spl mu/m /spl times/ 200/spl mu/m /spl times/ 3000/spl mu/m for each finger were realized. We report on the design, fabrication procedures, and operating performance of our ICPF actuators. Further development in the reduction of size of these actuators will enable effective force-feedback control of underwater micro objects and lead to new frontiers in cellular manipulation.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123041846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)