{"title":"Self-lifting artificial insect wings via electrostatic flapping actuators","authors":"Xiaojun Yan, Mingjing Qi, Liwei Lin","doi":"10.1109/MEMSYS.2015.7050876","DOIUrl":null,"url":null,"abstract":"We present self-lifting artificial insect wings by means of electrostatic actuation for the first time. Excited by a DC power source, biomimetic flapping motions have been generated to lift the artificial wings 5cm above ground (limited by the current experimental setup) under an operation frequency of 50-70Hz. Three achievements have been accomplished: (1) first successful demonstration of self-lifting electrostatic flying wings; (2) low power consumption as compared to other actuation schemes; and (3) self-adjustable rotating wing design to provide the lifting force. As such, this work can lead to a new class of electrostatic flapping actuators for artificial flying insects.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7050876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
We present self-lifting artificial insect wings by means of electrostatic actuation for the first time. Excited by a DC power source, biomimetic flapping motions have been generated to lift the artificial wings 5cm above ground (limited by the current experimental setup) under an operation frequency of 50-70Hz. Three achievements have been accomplished: (1) first successful demonstration of self-lifting electrostatic flying wings; (2) low power consumption as compared to other actuation schemes; and (3) self-adjustable rotating wing design to provide the lifting force. As such, this work can lead to a new class of electrostatic flapping actuators for artificial flying insects.