{"title":"HEp-2 Specimen Classification Using Multi-resolution Local Patterns and SVM","authors":"Siyamalan Manivannan, Wenqi Li, Shazia Akbar, Ruixuan Wang, Jianguo Zhang, S. McKenna","doi":"10.1109/I3A.2014.20","DOIUrl":null,"url":null,"abstract":"A pattern recognition system was developed to classify immunofluorescence images of HEp-2 specimens into seven classes: homogeneous, speckled, nucleolar, centromere, golgi, nuclear membrane, and mitotic spindle. Root-SIFT features together with multi-resolution local patterns were used to capture local shape and texture information. Sparse coding with max-pooling was applied to get an image representation from these local features. Specimens were classified using a linear support vector machine. Leave-one-specimen-out experiments on the I3A Contest Task 2 data set predicted a mean class accuracy of 89.9%.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.2014.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
A pattern recognition system was developed to classify immunofluorescence images of HEp-2 specimens into seven classes: homogeneous, speckled, nucleolar, centromere, golgi, nuclear membrane, and mitotic spindle. Root-SIFT features together with multi-resolution local patterns were used to capture local shape and texture information. Sparse coding with max-pooling was applied to get an image representation from these local features. Specimens were classified using a linear support vector machine. Leave-one-specimen-out experiments on the I3A Contest Task 2 data set predicted a mean class accuracy of 89.9%.