A Momentum-incorporated Fast Parallelized Stochastic Gradient Descent for Latent Factor Model in Shared Memory Systems

Hang Gou, Jinli Li, Wen Qin, Chunlin He, Yurong Zhong, Rui Che
{"title":"A Momentum-incorporated Fast Parallelized Stochastic Gradient Descent for Latent Factor Model in Shared Memory Systems","authors":"Hang Gou, Jinli Li, Wen Qin, Chunlin He, Yurong Zhong, Rui Che","doi":"10.1109/ICNSC48988.2020.9238077","DOIUrl":null,"url":null,"abstract":"Latent factor (LF) model is an effective method for extracting useful knowledge from high-dimensional and sparse (HiDS) data generated by various industrial applications. Parallelized stochastic gradient descent (SGD) is widely used in building a parallelized LF model for handling large-scale HiDS data, but parallelized SGD suffers from slow convergence and considerable time cost. To address this issue, this study incorporates the principle of momentum into parallelized SGD, where momentum decay coefficient and learning rate are adjusted dynamically, and proposes a momentum-incorporated fast parallelized SGD (MFSGD) method to discover latent patterns from large-scale HiDS data. The experiments on two datasets show that the proposed MFSGD method outperforms state-of-the-art parallel SGD methods in terms of computational efficiency.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Latent factor (LF) model is an effective method for extracting useful knowledge from high-dimensional and sparse (HiDS) data generated by various industrial applications. Parallelized stochastic gradient descent (SGD) is widely used in building a parallelized LF model for handling large-scale HiDS data, but parallelized SGD suffers from slow convergence and considerable time cost. To address this issue, this study incorporates the principle of momentum into parallelized SGD, where momentum decay coefficient and learning rate are adjusted dynamically, and proposes a momentum-incorporated fast parallelized SGD (MFSGD) method to discover latent patterns from large-scale HiDS data. The experiments on two datasets show that the proposed MFSGD method outperforms state-of-the-art parallel SGD methods in terms of computational efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动量的共享存储系统潜在因子模型快速并行随机梯度下降
潜在因素模型(Latent factor model, LF)是从各种工业应用中产生的高维稀疏数据中提取有用知识的有效方法。并行化随机梯度下降法(SGD)被广泛应用于建立大规模HiDS数据的并行化LF模型,但其收敛速度慢,耗时长。针对这一问题,本研究将动量原理引入到并行化SGD中,动态调整动量衰减系数和学习率,提出了一种基于动量的快速并行化SGD (MFSGD)方法,从大规模HiDS数据中发现潜在模式。在两个数据集上的实验表明,所提出的MFSGD方法在计算效率方面优于当前最先进的并行SGD方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1