Chinese-English mixed-lingual keyword spotting

Shan-Ruei You, Shih-Chieh Chien, Chih-Hsing Hsu, Ke-Shiu Chen, Jia-Jang Tu, Jeng-Shien Lin, Sen-Chia Chang
{"title":"Chinese-English mixed-lingual keyword spotting","authors":"Shan-Ruei You, Shih-Chieh Chien, Chih-Hsing Hsu, Ke-Shiu Chen, Jia-Jang Tu, Jeng-Shien Lin, Sen-Chia Chang","doi":"10.1109/CHINSL.2004.1409630","DOIUrl":null,"url":null,"abstract":"Base on our former experience in the \"ITRI 104 Auto Attendant System\" of using keyword spotting for Mandarin speech recognition (W.-C. Shieh et al., CCL Technical Journal, vol. 96), a Chinese-English mixed-lingual keyword spotting system, which caters for the Taiwanese speaking style, is presented. Detailed descriptions and discussions for developing the mixed-lingual auto attendant system are included, especially for solving different scoring scales in the decoding phase and the re-scoring phase for the two languages. In the decoding phase, we propose a bias-compensation method to make up the score-gap in the likelihood calculation of using Chinese and English acoustic models. To select the most probable result from the recognized hypotheses, a method is also presented of normalizing the combination scores when using different scoring mechanisms in the re-scoring phase.","PeriodicalId":212562,"journal":{"name":"2004 International Symposium on Chinese Spoken Language Processing","volume":"8 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2004.1409630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Base on our former experience in the "ITRI 104 Auto Attendant System" of using keyword spotting for Mandarin speech recognition (W.-C. Shieh et al., CCL Technical Journal, vol. 96), a Chinese-English mixed-lingual keyword spotting system, which caters for the Taiwanese speaking style, is presented. Detailed descriptions and discussions for developing the mixed-lingual auto attendant system are included, especially for solving different scoring scales in the decoding phase and the re-scoring phase for the two languages. In the decoding phase, we propose a bias-compensation method to make up the score-gap in the likelihood calculation of using Chinese and English acoustic models. To select the most probable result from the recognized hypotheses, a method is also presented of normalizing the combination scores when using different scoring mechanisms in the re-scoring phase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中英文混合关键词识别
基于我们在“工研104自动话务员系统”中使用关键词识别进行普通话语音识别的经验。Shieh et al., CCL technology Journal, vol. 96),提出了一个中英文混合语言关键字识别系统,它迎合了台湾人的说话风格。对混合语言自动服务员系统的开发进行了详细的描述和讨论,特别是解决了两种语言在解码阶段和重新评分阶段的不同评分尺度。在解码阶段,我们提出了一种偏差补偿方法来弥补使用中英文声学模型进行似然计算时的得分差距。为了从识别的假设中选择最可能的结果,还提出了在重新评分阶段使用不同评分机制时对组合分数进行归一化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discriminative transform for confidence estimation in Mandarin speech recognition A comparative study on various confidence measures in large vocabulary speech recognition Analysis of paraphrased corpus and lexical-based approach to Chinese paraphrasing Unseen handset mismatch compensation based on feature/model-space a priori knowledge interpolation for robust speaker recognition Use of direct modeling in natural language generation for Chinese and English translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1