Epoxy Resin with Metal Complex Additives for Improved Reliability of Epoxy-Copper Joint

Jiaxiong Li, John Wilson, D. Cheung, Zhijian Sun, K. Moon, Madhavan Swaminathan, C. Wong
{"title":"Epoxy Resin with Metal Complex Additives for Improved Reliability of Epoxy-Copper Joint","authors":"Jiaxiong Li, John Wilson, D. Cheung, Zhijian Sun, K. Moon, Madhavan Swaminathan, C. Wong","doi":"10.1109/ectc51906.2022.00318","DOIUrl":null,"url":null,"abstract":"Delamination and cracking of the many epoxy-copper interfaces under stress is one major failure mechanism in power packaging. It has therefore become a critical issue in the upcoming wide-bandgap semiconductor era that is expecting increased power density and device miniaturization. The higher operation temperature and voltage, as well as the harsh operation environments considering humidity factors, have posed great challenges on the robustness of these joints. Under moisture attack, the covalent bond or hydrogen bond formation based mechanism, which can be assisted by coupling agents, are intrinsically susceptible to hydrolysis degradation. Coordination bonds between copper and ligands with O or N doners, on the other hand, are a notably more stable mechanism. Furthermore, the costly and limited-access substrate pre-treatments are deemed less favorable in the fast-paced assembly process. The introduction of coordination compounds in epoxy resin that can function at interfaces without being consumed by the polymer backbone remains an obstacle. To address these issues, in this work an in-formulation metal complex-based modifier for epoxy resin is reported to enhance the adhesion performance of epoxy to copper under temperature-humidity aging. The curing, thermomechanical and chemical assessments are used to provide mechanistic insights into the adhesion and moisture resistance improvement.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Delamination and cracking of the many epoxy-copper interfaces under stress is one major failure mechanism in power packaging. It has therefore become a critical issue in the upcoming wide-bandgap semiconductor era that is expecting increased power density and device miniaturization. The higher operation temperature and voltage, as well as the harsh operation environments considering humidity factors, have posed great challenges on the robustness of these joints. Under moisture attack, the covalent bond or hydrogen bond formation based mechanism, which can be assisted by coupling agents, are intrinsically susceptible to hydrolysis degradation. Coordination bonds between copper and ligands with O or N doners, on the other hand, are a notably more stable mechanism. Furthermore, the costly and limited-access substrate pre-treatments are deemed less favorable in the fast-paced assembly process. The introduction of coordination compounds in epoxy resin that can function at interfaces without being consumed by the polymer backbone remains an obstacle. To address these issues, in this work an in-formulation metal complex-based modifier for epoxy resin is reported to enhance the adhesion performance of epoxy to copper under temperature-humidity aging. The curing, thermomechanical and chemical assessments are used to provide mechanistic insights into the adhesion and moisture resistance improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属复合添加剂环氧树脂对提高环氧铜接头可靠性的影响
环氧铜界面在应力作用下的分层和开裂是电源封装的主要失效机制之一。因此,在即将到来的宽禁带半导体时代,它已成为一个关键问题,期望提高功率密度和器件小型化。较高的工作温度和电压,以及考虑湿度因素的恶劣工作环境,对这些接头的坚固性提出了很大的挑战。在水分侵蚀下,以共价键或氢键形成为基础的机制,可以通过偶联剂辅助,本质上容易被水解降解。另一方面,铜与O或N给体配体之间的配位键是一种明显更稳定的机制。此外,在快节奏的组装过程中,昂贵和有限的基板预处理被认为不太有利。在环氧树脂中引入能在界面上起作用而不被聚合物主链消耗的配位化合物仍然是一个障碍。为了解决这些问题,本文报道了一种配方内金属配合物基环氧树脂改性剂,以提高环氧树脂在温度-湿度老化下对铜的粘附性能。固化,热机械和化学评估用于提供附着力和抗湿性改善的机理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient Thermal Modeling of Die Bond Process in Multiple Die Stacked Flash Memory Package Development and Application of the Moisture-Dependent Viscoelastic Model of Polyimide in Hygro-Thermo-Mechanical Analysis of Fan-Out Interconnect Superb sinterability of the Cu paste consisting of bimodal size distribution Cu nanoparticles for low-temperature and pressureless sintering of large-area die attachment and the sintering mechanism Demonstration of Substrate Embedded Ni-Zn Ferrite Core Solenoid Inductors Using a Photosensitive Glass Substrate A De-Embedding and Embedding Procedure for High-Speed Channel Eye Diagram Oscilloscope Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1