{"title":"A 10.8pJ/bit Pulse-Position Inductive Transceiver for Low-Energy Wireless 3D Integration","authors":"B. Fletcher, T. Mak, Shidhartha Das","doi":"10.1109/ESSCIRC.2019.8902754","DOIUrl":null,"url":null,"abstract":"This paper presents a low-energy die-to-die inductive transceiver for use within a stacked 3D-IC. The design is implemented in a 2-tier 0.35um CMOS test chip and demonstrates vertical communication at a rate of 133Mbps/channel, across a distance of 110um, whilst consuming only 10.8pJ per transmitted bit. This represents a 5.3× improvement when compared to state-of-the-art inductive transceivers by combining: (1) 3-ary pulse-position modulation, to encode data in terms of the latency between sequential pulses (rather than using one-to-one pulse-code mappings), and (2) A tunable current driver circuit to adjust the transmit current dynamically based on the quality of the stacked die assembly.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a low-energy die-to-die inductive transceiver for use within a stacked 3D-IC. The design is implemented in a 2-tier 0.35um CMOS test chip and demonstrates vertical communication at a rate of 133Mbps/channel, across a distance of 110um, whilst consuming only 10.8pJ per transmitted bit. This represents a 5.3× improvement when compared to state-of-the-art inductive transceivers by combining: (1) 3-ary pulse-position modulation, to encode data in terms of the latency between sequential pulses (rather than using one-to-one pulse-code mappings), and (2) A tunable current driver circuit to adjust the transmit current dynamically based on the quality of the stacked die assembly.