DC-DC switching converter as on-field self energy meter

Javier Schandy, J. Oreggioni, Leonardo Steinfeld
{"title":"DC-DC switching converter as on-field self energy meter","authors":"Javier Schandy, J. Oreggioni, Leonardo Steinfeld","doi":"10.1109/LASCAS.2016.7451029","DOIUrl":null,"url":null,"abstract":"A DC-DC switching converter, originally included to reduce the power consumption of a Wireless Sensor Networks (WSN) node, has been proposed as the core of an on-field self-energy meter. In this paper we present a method and circuit that improves the electronics proposed by previous work by conditioning the signal from the switching converter that is connected to the microcontroller's counter. A software module that allows a WSN node to measure its own charge and current consumption was also implemented. The proposed method allows to measure the current consumption in a wide range, from 0 to 30mA, is highly linear and is ultra-low-power (the maximum current consumption is 8μA). Finally, we present a case study in which the proposed method is used to power profile a WSN node. Results show that a time-based estimation (Energest) overestimates the Clear Channel Assessment consumption for more than 10%.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A DC-DC switching converter, originally included to reduce the power consumption of a Wireless Sensor Networks (WSN) node, has been proposed as the core of an on-field self-energy meter. In this paper we present a method and circuit that improves the electronics proposed by previous work by conditioning the signal from the switching converter that is connected to the microcontroller's counter. A software module that allows a WSN node to measure its own charge and current consumption was also implemented. The proposed method allows to measure the current consumption in a wide range, from 0 to 30mA, is highly linear and is ultra-low-power (the maximum current consumption is 8μA). Finally, we present a case study in which the proposed method is used to power profile a WSN node. Results show that a time-based estimation (Energest) overestimates the Clear Channel Assessment consumption for more than 10%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DC-DC开关变换器作为现场自电能表
为了降低无线传感器网络(WSN)节点的功耗,提出了一种DC-DC开关转换器作为现场自电能表的核心。在本文中,我们提出了一种方法和电路,通过调节连接到微控制器计数器的开关转换器的信号来改进先前工作中提出的电子学。还实现了一个软件模块,该模块允许WSN节点测量自己的电荷和电流消耗。该方法可以在0 ~ 30mA的宽范围内测量电流消耗,具有高度线性和超低功耗(最大电流消耗为8μA)。最后,我们给出了一个案例研究,其中该方法用于WSN节点的功率分布。结果表明,基于时间的估算(Energest)将Clear Channel Assessment的消耗高估了10%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy harvesting with 3D-printed electrostatic generators A 30dBm PA for MTC communication in 65nm CMOS technology A low-cost microcontrolled dosimeter based on CD4007 devices for in vivo radiotherapy applications Telepresence using the kinect sensor and the NAO robot DC-DC switching converter as on-field self energy meter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1