A fisher discriminant framework based on Kernel Entropy Component Analysis for feature extraction and emotion recognition

Lei Gao, L. Qi, E. Chen, L. Guan
{"title":"A fisher discriminant framework based on Kernel Entropy Component Analysis for feature extraction and emotion recognition","authors":"Lei Gao, L. Qi, E. Chen, L. Guan","doi":"10.1109/ICMEW.2014.6890577","DOIUrl":null,"url":null,"abstract":"This paper aims at providing a general method for feature extraction and recognition. The most essential issues for pattern recognition include extracting discriminant features and improving recognition accuracy. Kernel Entropy Component Analysis (KECA), as a new method for data transformation and dimensionality reduction, has attracted more attentions. However, as KECA only reveals structure relating to the Renyi entropy of the input space data set, it cannot extract effectively discriminant classification information for recognition. In this paper, we propose combining KECA and Fisher's linear discriminant analysis (LDA), utilizing descriptor of information entropy and scatter information of classes to improve recognition performance. The proposed method is applied to speech-based emotion recognition, and evaluated though experiments on RML audiovisual emotion databases. The results clear demonstrate the effectiveness of the proposed solution.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper aims at providing a general method for feature extraction and recognition. The most essential issues for pattern recognition include extracting discriminant features and improving recognition accuracy. Kernel Entropy Component Analysis (KECA), as a new method for data transformation and dimensionality reduction, has attracted more attentions. However, as KECA only reveals structure relating to the Renyi entropy of the input space data set, it cannot extract effectively discriminant classification information for recognition. In this paper, we propose combining KECA and Fisher's linear discriminant analysis (LDA), utilizing descriptor of information entropy and scatter information of classes to improve recognition performance. The proposed method is applied to speech-based emotion recognition, and evaluated though experiments on RML audiovisual emotion databases. The results clear demonstrate the effectiveness of the proposed solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核熵分量分析的fisher判别框架用于特征提取和情感识别
本文旨在提供一种通用的特征提取和识别方法。模式识别的核心问题是识别特征的提取和识别精度的提高。核熵成分分析(kera)作为一种新的数据变换和降维方法,越来越受到人们的关注。然而,由于kea仅揭示了输入空间数据集的Renyi熵相关结构,无法有效提取判别分类信息进行识别。本文提出将kea与Fisher线性判别分析(LDA)相结合,利用信息熵描述符和类的离散信息来提高识别性能。将该方法应用于基于语音的情感识别,并在RML视听情感数据库上进行了实验验证。结果清楚地证明了所提出的解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fisher discriminant framework based on Kernel Entropy Component Analysis for feature extraction and emotion recognition User-centered design approach to promoting multimedia university degree program Content-based social image retrieval with context regularization Sample edge offset compensation for HEVC based 3D Video Coding Uncrowded window inspired information security display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1