Content-based social image retrieval with context regularization

Leiquan Wang, Zhicheng Zhao, Fei Su, Weichen Sun
{"title":"Content-based social image retrieval with context regularization","authors":"Leiquan Wang, Zhicheng Zhao, Fei Su, Weichen Sun","doi":"10.1109/ICMEW.2014.6890601","DOIUrl":null,"url":null,"abstract":"The retrieval and recommendation of social media have provided an immense opportunity to exploit the collective behavior of community users through linked multi-modal data, such as images and tags, where tags provide context information, and images represent visual content. The stability of content information is more reliable than user contributed context information, which was ignored by many existing methods. In this paper, through discovering the latent feature space between visual features and context, we propose a novel approach for social image retrieval by imposing context regularization terms to constraint visual features. The method can effectively reflect the interior visual structure for social image representation. Experimental results on the NUS-WIDEOBJECT dataset demonstrate that the proposed approach obtains competitive performance compared with state-of-the-art methods.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The retrieval and recommendation of social media have provided an immense opportunity to exploit the collective behavior of community users through linked multi-modal data, such as images and tags, where tags provide context information, and images represent visual content. The stability of content information is more reliable than user contributed context information, which was ignored by many existing methods. In this paper, through discovering the latent feature space between visual features and context, we propose a novel approach for social image retrieval by imposing context regularization terms to constraint visual features. The method can effectively reflect the interior visual structure for social image representation. Experimental results on the NUS-WIDEOBJECT dataset demonstrate that the proposed approach obtains competitive performance compared with state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内容的社会图像检索与上下文正则化
社会媒体的检索和推荐为利用社区用户的集体行为提供了巨大的机会,通过链接的多模态数据,如图像和标签,其中标签提供上下文信息,图像表示视觉内容。内容信息的稳定性比用户提供的上下文信息更可靠,这一点被许多现有方法所忽略。本文通过发现视觉特征和上下文之间的潜在特征空间,提出了一种新的社会图像检索方法,即通过施加上下文正则化项来约束视觉特征。该方法可以有效地反映社会形象表征的内部视觉结构。在NUS-WIDEOBJECT数据集上的实验结果表明,与目前最先进的方法相比,该方法具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fisher discriminant framework based on Kernel Entropy Component Analysis for feature extraction and emotion recognition User-centered design approach to promoting multimedia university degree program Content-based social image retrieval with context regularization Sample edge offset compensation for HEVC based 3D Video Coding Uncrowded window inspired information security display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1