Mean Reflected Mass: A Physically Interpretable Metric for Safety Assessment and Posture Optimization in Human-Robot Interaction

Thomas Steinecker, Alexander Kurdas, Nico Mansfeld, Mazin Hamad, R. J. Kirschner, Saeed Abdolshah, S. Haddadin
{"title":"Mean Reflected Mass: A Physically Interpretable Metric for Safety Assessment and Posture Optimization in Human-Robot Interaction","authors":"Thomas Steinecker, Alexander Kurdas, Nico Mansfeld, Mazin Hamad, R. J. Kirschner, Saeed Abdolshah, S. Haddadin","doi":"10.1109/icra46639.2022.9811582","DOIUrl":null,"url":null,"abstract":"In physical human-robot interaction (pHRI), safety is a key requirement. As collisions between humans and robots can generally not be avoided, it must be ensured that the human is not harmed. The robot reflected mass, the contact geometry, and the relative velocity between human and robot are the parameters that have the most significant influence on human injury severity during a collision. The reflected mass depends on the robot configuration and can be optimized especially in kinematically redundant robots. In this paper, we propose the Mean Reflected Mass (MRM) metric. The MRM is independent of the direction of contact/motion and enables assessing and optimizing the robot posture w.r.t. safety. In contrast to existing metrics, it is physically interpretable, meaning that it can be related to biomechanical injury data for realistic and model-independent safety analysis. For the Franka Emika Panda, we demonstrate in simulation that an optimization of the robot's MRM reduces the mean collision force. Finally, the relevance of the MRM for real pHRI applications is confirmed through a collision experiment.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In physical human-robot interaction (pHRI), safety is a key requirement. As collisions between humans and robots can generally not be avoided, it must be ensured that the human is not harmed. The robot reflected mass, the contact geometry, and the relative velocity between human and robot are the parameters that have the most significant influence on human injury severity during a collision. The reflected mass depends on the robot configuration and can be optimized especially in kinematically redundant robots. In this paper, we propose the Mean Reflected Mass (MRM) metric. The MRM is independent of the direction of contact/motion and enables assessing and optimizing the robot posture w.r.t. safety. In contrast to existing metrics, it is physically interpretable, meaning that it can be related to biomechanical injury data for realistic and model-independent safety analysis. For the Franka Emika Panda, we demonstrate in simulation that an optimization of the robot's MRM reduces the mean collision force. Finally, the relevance of the MRM for real pHRI applications is confirmed through a collision experiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平均反射质量:人机交互中安全评估和姿态优化的物理可解释度量
在人机物理交互(pHRI)中,安全性是一个关键要求。由于人与机器人之间的碰撞通常是无法避免的,因此必须确保人不受伤害。在碰撞过程中,机器人的反射质量、接触几何形状以及人与机器人之间的相对速度是对人体损伤程度影响最大的参数。反射质量取决于机器人的结构,特别是在运动冗余的机器人中,反射质量可以优化。本文提出了平均反射质量(MRM)度量。MRM独立于接触/运动方向,能够评估和优化机器人的姿态。与现有指标相比,它具有物理可解释性,这意味着它可以与生物力学损伤数据相关联,用于现实和模型无关的安全性分析。对于Franka Emika Panda,我们在仿真中证明了机器人MRM的优化降低了平均碰撞力。最后,通过碰撞实验验证了MRM与实际pHRI应用的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can your drone touch? Exploring the boundaries of consumer-grade multirotors for physical interaction Underwater Dock Detection through Convolutional Neural Networks Trained with Artificial Image Generation Immersive Virtual Walking System Using an Avatar Robot R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration* Cityscapes TL++: Semantic Traffic Light Annotations for the Cityscapes Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1