Globally convergent range image registration by graph kernel algorithm

R. Sára, I. Okatani, A. Sugimoto
{"title":"Globally convergent range image registration by graph kernel algorithm","authors":"R. Sára, I. Okatani, A. Sugimoto","doi":"10.1109/3DIM.2005.51","DOIUrl":null,"url":null,"abstract":"Automatic range image registration without any knowledge of the viewpoint requires identification of common regions across different range images and then establishing point correspondences in these regions. We formulate this as a graph-based optimization problem. More specifically, we define a graph in which each vertex represents a putative match of two points, each edge represents binary consistency decision between two matches, and each edge orientation represents match quality from worse to better putative match. Then strict sub-kernel defined in the graph is maximized. The maximum strict sub-kernel algorithm enables us to uniquely determine the largest consistent matching of points. To evaluate the quality of a single match, we employ the histogram of triple products that are generated by all surface normals in a point neighborhood. Our experimental results show the effectiveness of our method for rough range image registration.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Automatic range image registration without any knowledge of the viewpoint requires identification of common regions across different range images and then establishing point correspondences in these regions. We formulate this as a graph-based optimization problem. More specifically, we define a graph in which each vertex represents a putative match of two points, each edge represents binary consistency decision between two matches, and each edge orientation represents match quality from worse to better putative match. Then strict sub-kernel defined in the graph is maximized. The maximum strict sub-kernel algorithm enables us to uniquely determine the largest consistent matching of points. To evaluate the quality of a single match, we employ the histogram of triple products that are generated by all surface normals in a point neighborhood. Our experimental results show the effectiveness of our method for rough range image registration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图核算法的全局收敛距离图像配准
在不了解视点的情况下,自动距离图像配准需要识别不同距离图像之间的共同区域,然后在这些区域中建立点对应关系。我们将其表述为基于图的优化问题。更具体地说,我们定义了一个图,其中每个顶点表示两个点的假设匹配,每个边表示两个匹配之间的二进制一致性决策,每个边的方向表示匹配质量从差到好的假设匹配。然后最大化图中定义的严格子核。最大严格子核算法使我们能够唯一地确定点的最大一致匹配。为了评估单个匹配的质量,我们使用由点邻域的所有表面法线生成的三重积的直方图。实验结果表明了该方法对粗距离图像配准的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A complete U-V-disparity study for stereovision based 3D driving environment analysis Simultaneous determination of registration and deformation parameters among 3D range images 3D digitization of a large model of imperial Rome Evaluating collinearity constraint for automatic range image registration Realistic human head modeling with multi-view hairstyle reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1