Prediction of landslide deep displacement using improved genetic algorithm based on time series analysis

Shao-jun Li, Fanzhen Meng, Chengxiang Yang
{"title":"Prediction of landslide deep displacement using improved genetic algorithm based on time series analysis","authors":"Shao-jun Li, Fanzhen Meng, Chengxiang Yang","doi":"10.1109/ICSSEM.2011.6081187","DOIUrl":null,"url":null,"abstract":"The change of landslide deep displacement due to excavation, reinforcement or rainfall is regarded as a time series. Predicting landslide deformation is a typical nonlinear optimization problem. This paper presents an improved genetic evolutionary algorithm with two step search to determine the model structure and parameters, it is applied to recognize the coefficients and orders of nonlinear polynomials model given by displacement time series analysis. On the basis of a practical engineering, results indicates that the predicted displacement is in good accordance with the monitoring data, the improved intelligent method is found to be reasonable and prospective.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The change of landslide deep displacement due to excavation, reinforcement or rainfall is regarded as a time series. Predicting landslide deformation is a typical nonlinear optimization problem. This paper presents an improved genetic evolutionary algorithm with two step search to determine the model structure and parameters, it is applied to recognize the coefficients and orders of nonlinear polynomials model given by displacement time series analysis. On the basis of a practical engineering, results indicates that the predicted displacement is in good accordance with the monitoring data, the improved intelligent method is found to be reasonable and prospective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间序列分析的改进遗传算法预测滑坡深部位移
将开挖、加固或降雨引起的滑坡深度位移变化视为一个时间序列。滑坡变形预测是一个典型的非线性优化问题。提出了一种改进的两步搜索遗传进化算法来确定模型结构和参数,并将其应用于位移时间序列分析给出的非线性多项式模型的系数和阶数的识别。实际工程结果表明,预测位移与监测数据吻合较好,改进的智能方法是合理的,具有较好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXTRACTOR: An extensible framework for identifying Aspect-Oriented refactoring opportunities Scenario simulation of Sino-Singapore Tianjin Eco-city development based on System Dynamics Face recognition based on classifier combinations Computer aided design and manufacture of high precision cam Design of wireless sensor networks for density of natural gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1