Bo Wang, Jun Zhou, Kah-Hyong Chang, M. Je, T. T. Kim
{"title":"A 0.18V charge-pumped DFF with 50.8% energy-delay reduction for near-/sub-threshold circuits","authors":"Bo Wang, Jun Zhou, Kah-Hyong Chang, M. Je, T. T. Kim","doi":"10.1109/ASSCC.2013.6690997","DOIUrl":null,"url":null,"abstract":"This paper presents a 16-transistor charge-pumped DFF featuring a low energy-delay product for near-/sub-threshold applications. The device count of the proposed DFF is minimized by eliminating clock buffer and employing pass gates instead of transmission gates. To reduce the Clock-to-Q delay and improve variation resilience, two charge pumps and an anti-inverse-narrow-width-effect strategy are utilized, improving the performance by 23%. The proposed DFF is fully functional down to 0.18V and shows the energy-delay product of 13.1 pJ·ns at 100% data activity, achieving 51.8% improvement compared to the conventional TGFF. When VDD=0.5V, the energy-delay product is averagely enhanced by 50.8%. Two 256-bit FIFOs are implemented in 180nm CMOS technology using the proposed DFF and TGFF. The FIFO utilizing the charge-pumped DFF exhibits 31.2% total power reduction at subthreshold regime.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6690997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a 16-transistor charge-pumped DFF featuring a low energy-delay product for near-/sub-threshold applications. The device count of the proposed DFF is minimized by eliminating clock buffer and employing pass gates instead of transmission gates. To reduce the Clock-to-Q delay and improve variation resilience, two charge pumps and an anti-inverse-narrow-width-effect strategy are utilized, improving the performance by 23%. The proposed DFF is fully functional down to 0.18V and shows the energy-delay product of 13.1 pJ·ns at 100% data activity, achieving 51.8% improvement compared to the conventional TGFF. When VDD=0.5V, the energy-delay product is averagely enhanced by 50.8%. Two 256-bit FIFOs are implemented in 180nm CMOS technology using the proposed DFF and TGFF. The FIFO utilizing the charge-pumped DFF exhibits 31.2% total power reduction at subthreshold regime.