{"title":"Whole-Body Control of Series-Parallel Hybrid Robots","authors":"Dennis Mronga, Shivesh Kumar, F. Kirchner","doi":"10.1109/icra46639.2022.9811616","DOIUrl":null,"url":null,"abstract":"Parallel mechanisms are becoming increasingly popular as subsystems in various robots due to their superior stiffness, payload-to-weight ratio, and dynamic properties. The serial connection of parallel subsystems leads to series-parallel hybrid robots, which are more difficult to model and control than serial or tree-type systems. At the same time, Whole-Body Control (WBC) has become the method of choice in the control of robots with redundant degrees of freedom, e.g., legged robots. However, most state-of-the-art WBC frameworks can only deal with serial or tree-type robot topologies. In this paper, we describe a computationally efficient framework for Whole-Body Control of series-parallel hybrid robots subjected to a large number of holonomic constraints. In contrast to existing WBC frameworks, our approach describes the optimization problem in the actuation space of a series-parallel robot, which provides better exploitation of the feasible workspace, higher accuracy, and more transparent behavior near singularities. We evaluate the proposed framework on two different humanoids with series-parallel architecture and compare its performance to a WBC approach for tree-type robots.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"8 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Parallel mechanisms are becoming increasingly popular as subsystems in various robots due to their superior stiffness, payload-to-weight ratio, and dynamic properties. The serial connection of parallel subsystems leads to series-parallel hybrid robots, which are more difficult to model and control than serial or tree-type systems. At the same time, Whole-Body Control (WBC) has become the method of choice in the control of robots with redundant degrees of freedom, e.g., legged robots. However, most state-of-the-art WBC frameworks can only deal with serial or tree-type robot topologies. In this paper, we describe a computationally efficient framework for Whole-Body Control of series-parallel hybrid robots subjected to a large number of holonomic constraints. In contrast to existing WBC frameworks, our approach describes the optimization problem in the actuation space of a series-parallel robot, which provides better exploitation of the feasible workspace, higher accuracy, and more transparent behavior near singularities. We evaluate the proposed framework on two different humanoids with series-parallel architecture and compare its performance to a WBC approach for tree-type robots.