MCE-based training of subspace distribution clustering HMM

Xiao-Bing Li, Lirong Dai, Ren-Hua Wang
{"title":"MCE-based training of subspace distribution clustering HMM","authors":"Xiao-Bing Li, Lirong Dai, Ren-Hua Wang","doi":"10.1109/CHINSL.2004.1409599","DOIUrl":null,"url":null,"abstract":"For resource-limited platforms, the subspace distribution clustering hidden Markov model (SDCHMM) is better than the continuous density hidden Markov model (CDHMM) for its smaller storage and lower computations while maintaining a decent recognition performance. But the normal SDCHMM obtaining method does not ensure optimality in classifier design. In order to obtain an optimal classifier, a new SDCHMM training algorithm that adjusts the parameters of SDCHMM according to the minimum classification error (MCE) criterion is proposed in this paper. Our experimental results on TiDigits and RM tasks show the MCE-based SDCHMM training algorithm provides 15-80% word error rate reduction (WERR) compared with the normal SDCHMM that is converted from CDHMM.","PeriodicalId":212562,"journal":{"name":"2004 International Symposium on Chinese Spoken Language Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2004.1409599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For resource-limited platforms, the subspace distribution clustering hidden Markov model (SDCHMM) is better than the continuous density hidden Markov model (CDHMM) for its smaller storage and lower computations while maintaining a decent recognition performance. But the normal SDCHMM obtaining method does not ensure optimality in classifier design. In order to obtain an optimal classifier, a new SDCHMM training algorithm that adjusts the parameters of SDCHMM according to the minimum classification error (MCE) criterion is proposed in this paper. Our experimental results on TiDigits and RM tasks show the MCE-based SDCHMM training algorithm provides 15-80% word error rate reduction (WERR) compared with the normal SDCHMM that is converted from CDHMM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于mce的子空间分布聚类HMM训练
在资源有限的平台上,子空间分布聚类隐马尔可夫模型(SDCHMM)比连续密度隐马尔可夫模型(CDHMM)具有更小的存储空间和更低的计算量,同时保持了较好的识别性能。但是常规的SDCHMM获取方法并不能保证分类器设计的最优性。为了获得最优分类器,本文提出了一种新的SDCHMM训练算法,该算法根据最小分类误差(minimum classification error, MCE)准则对SDCHMM的参数进行调整。我们在TiDigits和RM任务上的实验结果表明,与由CDHMM转换而来的普通SDCHMM相比,基于mce的SDCHMM训练算法可以减少15-80%的单词错误率(WERR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discriminative transform for confidence estimation in Mandarin speech recognition A comparative study on various confidence measures in large vocabulary speech recognition Analysis of paraphrased corpus and lexical-based approach to Chinese paraphrasing Unseen handset mismatch compensation based on feature/model-space a priori knowledge interpolation for robust speaker recognition Use of direct modeling in natural language generation for Chinese and English translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1