Automatic Generation of Robot Actions for Collaborative Tasks from Speech

Manizheh Zand, K. Kodur, Maria Kyrarini
{"title":"Automatic Generation of Robot Actions for Collaborative Tasks from Speech","authors":"Manizheh Zand, K. Kodur, Maria Kyrarini","doi":"10.1109/ICARA56516.2023.10125800","DOIUrl":null,"url":null,"abstract":"Robots have the potential to assist people in daily tasks, such as cooking a meal. Communicating with the robots verbally and in an unstructured way is important, as spoken language is the main form of communication for humans. This paper proposes a novel framework that automatically generates robot actions from unstructured speech. The proposed frame-work was evaluated by collecting data from 15 participants preparing their meals while seating on a chair in a randomly disrupted environment. The system can identify and respond to a task sequence while the user may be engaged in unrelated conversations, even if the user's speech might be unstructured and grammatically incorrect. The accuracy of the proposed system is 98.6%, which is a very promising finding.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10125800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robots have the potential to assist people in daily tasks, such as cooking a meal. Communicating with the robots verbally and in an unstructured way is important, as spoken language is the main form of communication for humans. This paper proposes a novel framework that automatically generates robot actions from unstructured speech. The proposed frame-work was evaluated by collecting data from 15 participants preparing their meals while seating on a chair in a randomly disrupted environment. The system can identify and respond to a task sequence while the user may be engaged in unrelated conversations, even if the user's speech might be unstructured and grammatically incorrect. The accuracy of the proposed system is 98.6%, which is a very promising finding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语音的协作任务机器人动作自动生成
机器人有潜力帮助人们完成日常任务,比如做饭。与机器人进行口头和非结构化的交流非常重要,因为口头语言是人类交流的主要形式。本文提出了一种从非结构化语音中自动生成机器人动作的新框架。通过收集15名参与者在随机干扰的环境中坐在椅子上准备饭菜的数据,对拟议的框架进行了评估。当用户可能在进行不相关的对话时,系统可以识别并响应任务序列,即使用户的讲话可能是无结构的和语法错误的。该系统的准确率为98.6%,这是一个非常有希望的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fused Swish-ReLU Efficient-Net Model for Deepfakes Detection SensorClouds: A Framework for Real-Time Processing of Multi-modal Sensor Data for Human-Robot-Collaboration Modified Bug Algorithm with Proximity Sensors to Reduce Human-Cobot Collisions Toward Computationally Efficient Path Generation and Push Planning for Robotic Nonprehensile Manipulation Correlation Analysis of Factors Influencing the Motion Planning Accuracy of Articulated Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1