Distributed face cooling scheme for tiny laser power scale-up

A. Kausas, Lihe Zheng, T. Taira
{"title":"Distributed face cooling scheme for tiny laser power scale-up","authors":"A. Kausas, Lihe Zheng, T. Taira","doi":"10.23919/LTB-3D.2017.7947404","DOIUrl":null,"url":null,"abstract":"In this work, we have compared the performance of single rod crystal to a newly developed Distributed Face Cooling (DFC) structure which was made by surface activated bonding technology and allowed to combine transparent heatsink to a gain crystal at room temperature. The Sapphire and Nd3+:YAG crystal plates were combined in this fashion to produce nine crystal chip which was further used to obtain CW output. Slope efficiencies obtained in this experiment were 27% and 64% for single rod and DFC structure, respectively. This is the first demonstration of distributed face cooling system outperformed conventionally single rod system.","PeriodicalId":183993,"journal":{"name":"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/LTB-3D.2017.7947404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we have compared the performance of single rod crystal to a newly developed Distributed Face Cooling (DFC) structure which was made by surface activated bonding technology and allowed to combine transparent heatsink to a gain crystal at room temperature. The Sapphire and Nd3+:YAG crystal plates were combined in this fashion to produce nine crystal chip which was further used to obtain CW output. Slope efficiencies obtained in this experiment were 27% and 64% for single rod and DFC structure, respectively. This is the first demonstration of distributed face cooling system outperformed conventionally single rod system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微型激光功率放大的分布式面冷却方案
在这项工作中,我们将单棒晶体的性能与新开发的分布式表面冷却(DFC)结构进行了比较,该结构由表面活化键合技术制成,并允许在室温下将透明散热器与增益晶体结合。以这种方式将蓝宝石和Nd3+:YAG晶片组合成9块晶片,进一步用于获得连续波输出。本实验获得的单杆和DFC结构的斜率效率分别为27%和64%。这是首次证明分布式表面冷却系统优于传统的单棒系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Surface activated wafer bonding of LiNbO3 and SiO2/Si for LNOI on Si A study on low temperature SAM modified POM direct bonding affected by VUV/O3 irradiation Ar+H2 atmospheric-pressure plasma treatment for Au-Au bonding and influence of air exposure on surface contamination Sn-Bi added Ag-based transient liquid phase sintering for low temperature bonding Temperature dependence of fatigue crack propagation rate of pressureless sintered Ag nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1