{"title":"Sn-Bi added Ag-based transient liquid phase sintering for low temperature bonding","authors":"M. K. Faiz, Takehiro Yamamoto, M. Yoshida","doi":"10.23919/LTB-3D.2017.7947430","DOIUrl":null,"url":null,"abstract":"A low temperature and low pressure fluxless bonding of plateless Cu-Cu substrates has been achieved by transient liquid phase sintering of Ag and Sn-Bi eutectic powder mixture in a formic acid reducing environment. The effects of Sn-Bi addition amount and sintering temperature to the shear strength and microstructure were investigated. Remelting temperature of the sintered paste was also examined. Shear strength of 30 weight percentage added Sn-Bi that was sintered at 250°C was over than 20 MPa. The microstructure varied with the Sn-Bi addition amount, however, mainly consisted of Ag solid solution and/or Ag-Sn intermetallic compounds (IMCs), Bi-rich phase and Cu-Sn IMCs. No remelting event at Sn-Bi eutectic temperature was observed and the remelting temperature shifted to approximately 262°C, implying the possibility for higher operation temperature although the processing was performed at lower temperature.","PeriodicalId":183993,"journal":{"name":"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/LTB-3D.2017.7947430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A low temperature and low pressure fluxless bonding of plateless Cu-Cu substrates has been achieved by transient liquid phase sintering of Ag and Sn-Bi eutectic powder mixture in a formic acid reducing environment. The effects of Sn-Bi addition amount and sintering temperature to the shear strength and microstructure were investigated. Remelting temperature of the sintered paste was also examined. Shear strength of 30 weight percentage added Sn-Bi that was sintered at 250°C was over than 20 MPa. The microstructure varied with the Sn-Bi addition amount, however, mainly consisted of Ag solid solution and/or Ag-Sn intermetallic compounds (IMCs), Bi-rich phase and Cu-Sn IMCs. No remelting event at Sn-Bi eutectic temperature was observed and the remelting temperature shifted to approximately 262°C, implying the possibility for higher operation temperature although the processing was performed at lower temperature.