Surrogate Methods Applied to Hyperparameter Optimization Problem

José Ilmar Cruz Freire Neto, André Britto
{"title":"Surrogate Methods Applied to Hyperparameter Optimization Problem","authors":"José Ilmar Cruz Freire Neto, André Britto","doi":"10.5753/eniac.2022.227594","DOIUrl":null,"url":null,"abstract":"Hyperparameters affects the performance of machine learning models. Hyperparameter optimization is an area that aims to find the best of them, but it deals with a considerable number of machine learning training, which can be slow. Thus, surrogates can be used to soften this slow process. This paper evaluates the performance of two surrogate methods, M1 and MARSAOP, applied to hyperparameter optimization. The surrogates are confronted with six hyperparameter optimization algorithms from the literature for classification and regression problems. Results indicate that the surrogate methods are faster than the traditional algorithms.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperparameters affects the performance of machine learning models. Hyperparameter optimization is an area that aims to find the best of them, but it deals with a considerable number of machine learning training, which can be slow. Thus, surrogates can be used to soften this slow process. This paper evaluates the performance of two surrogate methods, M1 and MARSAOP, applied to hyperparameter optimization. The surrogates are confronted with six hyperparameter optimization algorithms from the literature for classification and regression problems. Results indicate that the surrogate methods are faster than the traditional algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代理方法在超参数优化问题中的应用
超参数影响机器学习模型的性能。超参数优化是一个旨在找到其中最佳的领域,但它涉及相当多的机器学习训练,这可能很慢。因此,代理人可以用来缓和这个缓慢的过程。本文评价了用于超参数优化的两种代理方法M1和MARSAOP的性能。在分类和回归问题上,代理人面临着来自文献的六种超参数优化算法。结果表明,代理方法比传统算法更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment Textile defect detection using YOLOv5 on AITEX Dataset Aspects of a learned model to predict the quality of life of university students in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1