Density Evaluation based on Convolutional Networks in Rape Images

Lifeng Liu, Bo Xin, Zhangqing Zhu, Tao Jiang, Chunlin Chen, Tao Wu
{"title":"Density Evaluation based on Convolutional Networks in Rape Images","authors":"Lifeng Liu, Bo Xin, Zhangqing Zhu, Tao Jiang, Chunlin Chen, Tao Wu","doi":"10.1109/ICNSC48988.2020.9238120","DOIUrl":null,"url":null,"abstract":"We evaluate the density of rape pictures based on Convolutional Networks, and compare methods via fused features combined with two kinds of regression approaches: Support Vector Regression, SVR, and Lasso Regression. The Convolutional Networks extract the features of rape images through convolutional layers, pooling layers and activation functions, and then, fully connected layers regress the extracted features to the density value. The fused features involve three types of features: image energy, local binary pattern(LBP) features and Gabor wavelets texture features. First, the method extracts the fused features through python scikit-learn packages [1], and then regression model regresses the fused features to the density value by Support Vector Regression [2] [3] or Lasso Regression [4].","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We evaluate the density of rape pictures based on Convolutional Networks, and compare methods via fused features combined with two kinds of regression approaches: Support Vector Regression, SVR, and Lasso Regression. The Convolutional Networks extract the features of rape images through convolutional layers, pooling layers and activation functions, and then, fully connected layers regress the extracted features to the density value. The fused features involve three types of features: image energy, local binary pattern(LBP) features and Gabor wavelets texture features. First, the method extracts the fused features through python scikit-learn packages [1], and then regression model regresses the fused features to the density value by Support Vector Regression [2] [3] or Lasso Regression [4].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积网络的强奸图像密度评估
本文对基于卷积网络的强奸图片密度进行了评估,并比较了融合特征与支持向量回归、SVR和Lasso回归两种回归方法的方法。卷积网络通过卷积层、池化层和激活函数提取油菜图像的特征,然后通过全连通层将提取的特征回归到密度值。融合的特征包括三种类型的特征:图像能量特征、局部二值模式特征和Gabor小波纹理特征。该方法首先通过python scikit-learn包[1]提取融合特征,然后通过支持向量回归[2][3]或Lasso回归[4]将融合特征回归到密度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1