G. Schondelmaier, S. Hartmann, D. May, A. Shaporin, S. Voigt, R. D. Rodriguez, O. Gordan, D. Zahn, J. Mehner, K. Hiller, B. Wunderle
{"title":"Piezoresistive force sensor and thermal actuators usage as applications to nanosystems manipulation: Design, simulations, technology and experiments","authors":"G. Schondelmaier, S. Hartmann, D. May, A. Shaporin, S. Voigt, R. D. Rodriguez, O. Gordan, D. Zahn, J. Mehner, K. Hiller, B. Wunderle","doi":"10.1109/EUROSIME.2013.6529967","DOIUrl":null,"url":null,"abstract":"For properties characterization of nanostructured materials and simultaneously to predict their reliability a tensile testing system consisting of a thermal actuator and a lateral nano-Newton force piezoresistive sensor is presented. The implementation of a piezoresistive load sensor in a MEMS-based tensile testing system can be regarded as an innovative and ultrasensitive method to continuously observe the specimen deformation while simultaneously measuring the applied load electronically with nano-Newton resolution. The primary technique that we have used for the fabrication of these systems is Bonding and Deep Reactive Ion Etching (BDRIE) applied on SOI wafers.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
For properties characterization of nanostructured materials and simultaneously to predict their reliability a tensile testing system consisting of a thermal actuator and a lateral nano-Newton force piezoresistive sensor is presented. The implementation of a piezoresistive load sensor in a MEMS-based tensile testing system can be regarded as an innovative and ultrasensitive method to continuously observe the specimen deformation while simultaneously measuring the applied load electronically with nano-Newton resolution. The primary technique that we have used for the fabrication of these systems is Bonding and Deep Reactive Ion Etching (BDRIE) applied on SOI wafers.