{"title":"A 20μW 10MHz relaxation oscillator with adaptive bias and fast self-calibration in 40nm CMOS for micro-aerial robotics application","authors":"Xuan Zhang, D. Brooks, Gu-Yeon Wei","doi":"10.1109/ASSCC.2013.6691075","DOIUrl":null,"url":null,"abstract":"Efficient actuation control of flapping-wing microrobots requires a low-power frequency reference with good absolute accuracy. To meet this requirement, we designed a fully-integrated 10MHz relaxation oscillator in a 40nm CMOS process. By adaptively biasing the continuous-time comparator, we are able to achieve a power consumption of 20μW, a 68% reduction to the conventional fixed bias design. A built-in self-calibration controller enables fast post-fabrication calibration of the clock frequency. Measurements show a frequency drift of 1.2% as the battery voltage changes from 3V to 4.1V.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"27 25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6691075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Efficient actuation control of flapping-wing microrobots requires a low-power frequency reference with good absolute accuracy. To meet this requirement, we designed a fully-integrated 10MHz relaxation oscillator in a 40nm CMOS process. By adaptively biasing the continuous-time comparator, we are able to achieve a power consumption of 20μW, a 68% reduction to the conventional fixed bias design. A built-in self-calibration controller enables fast post-fabrication calibration of the clock frequency. Measurements show a frequency drift of 1.2% as the battery voltage changes from 3V to 4.1V.