I. Ben Akkez, C. Fenouillet-Béranger, A. Cros, P. Perreau, S. Haendler, O. Weber, F. Andrieu, D. Pellissier-Tanon, F. Abbate, C. Richard, R. Beneyton, P. Gouraud, A. Margain, C. Borowiak, E. Gourvest, K. Bourdelle, B. Nguyen, T. Poiroux, T. Skotnicki, O. Faynot, F. Balestra, G. Ghibaudo, F. Boeuf
{"title":"Impact of substrate orientation on Ultra Thin BOX Fully Depleted SOI electrical performances","authors":"I. Ben Akkez, C. Fenouillet-Béranger, A. Cros, P. Perreau, S. Haendler, O. Weber, F. Andrieu, D. Pellissier-Tanon, F. Abbate, C. Richard, R. Beneyton, P. Gouraud, A. Margain, C. Borowiak, E. Gourvest, K. Bourdelle, B. Nguyen, T. Poiroux, T. Skotnicki, O. Faynot, F. Balestra, G. Ghibaudo, F. Boeuf","doi":"10.1109/ULIS.2012.6193386","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the electrical properties of Ultra Thin Buried Oxide (UTBOX) Fully Depleted Silicon On Insulator (FD-SOI) MOS devices for rotated and not rotated substrate with different gate lengths. We found a significant performance enhancement on FD-SOI PMOSFETs as expected, while keeping a good control of short channel effects. Surprisingly, to a lower extent, an improvement is also found for NMOS devices. We have also studied the carrier mobility degradation as a function of temperature and we point out the contribution of different mechanisms that reduce the mobility such as impurity Coulomb scattering, phonons and neutral defects as a function gate length. We find that there is no significant effect of rotated substrate on the mobility degradation. All these results are discussed and possible explanations are also given.","PeriodicalId":350544,"journal":{"name":"2012 13th International Conference on Ultimate Integration on Silicon (ULIS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Conference on Ultimate Integration on Silicon (ULIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULIS.2012.6193386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we compare the electrical properties of Ultra Thin Buried Oxide (UTBOX) Fully Depleted Silicon On Insulator (FD-SOI) MOS devices for rotated and not rotated substrate with different gate lengths. We found a significant performance enhancement on FD-SOI PMOSFETs as expected, while keeping a good control of short channel effects. Surprisingly, to a lower extent, an improvement is also found for NMOS devices. We have also studied the carrier mobility degradation as a function of temperature and we point out the contribution of different mechanisms that reduce the mobility such as impurity Coulomb scattering, phonons and neutral defects as a function gate length. We find that there is no significant effect of rotated substrate on the mobility degradation. All these results are discussed and possible explanations are also given.