Temporal filtering and oriented PCA neural networks for blind source separation

K. Diamantaras, Theophilos Papadimitriou
{"title":"Temporal filtering and oriented PCA neural networks for blind source separation","authors":"K. Diamantaras, Theophilos Papadimitriou","doi":"10.1109/NNSP.2003.1318036","DOIUrl":null,"url":null,"abstract":"PCA-related (principal component analysis) neural models have been shown to solve the instantaneous BSS (blind source separation) problem for temporally colored sources. In this paper we show that arbitrary temporal filtering combined with models associated to the extension of standard PCA known as oriented PCA (OPCA) provide a solution to the problem that is based on second order statistics and requires no prewhitening of the observation signals. Furthermore, the issue of the optimal temporal filter is addressed for filters of length 2 and 3 although the design of the universally optimal filter is still an open question. Earlier neural OPCA networks are used to demonstrate the validity of the method on artificially generated datasets.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

PCA-related (principal component analysis) neural models have been shown to solve the instantaneous BSS (blind source separation) problem for temporally colored sources. In this paper we show that arbitrary temporal filtering combined with models associated to the extension of standard PCA known as oriented PCA (OPCA) provide a solution to the problem that is based on second order statistics and requires no prewhitening of the observation signals. Furthermore, the issue of the optimal temporal filter is addressed for filters of length 2 and 3 although the design of the universally optimal filter is still an open question. Earlier neural OPCA networks are used to demonstrate the validity of the method on artificially generated datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时域滤波与定向PCA神经网络的盲源分离
pca相关的(主成分分析)神经模型已经被证明可以解决瞬时彩色源的瞬时BSS(盲源分离)问题。在本文中,我们展示了任意时间滤波与标准主成分分析扩展相关的模型相结合,称为定向主成分分析(OPCA),提供了基于二阶统计量的问题的解决方案,并且不需要对观测信号进行预白化。此外,对于长度为2和3的滤波器,虽然普遍最优滤波器的设计仍然是一个开放的问题,但最优时间滤波器的问题得到了解决。先前的神经OPCA网络被用来证明该方法在人工生成的数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1