{"title":"Photoluminescence Studies of Sequentially Mg and H Ion-implanted GaN with Various Implantation Depths and Crystallographic Planes","authors":"K. Shima, K. Kojima, A. Uedono, S. Chichibu","doi":"10.23919/IWJT.2019.8802886","DOIUrl":null,"url":null,"abstract":"GaN is one of the promising candidates for the use in high-power electronic devices 1) operating at high frequencies, and normally-off GaN-based transistors on freestanding (FS) GaN substrates with low specific on-state resistances (~1.0 mΩ•cm 2) and high off-state breakdown voltage (>1.7 kV) have been demonstrated. 2 – 4) One of the challenging issues for producing such devices at low cost is the control of conductivity type and conductivity at designated segments using an ion-implantation (I/I) technique. Especially, p-type doping by Mg-I/I has been difficult 5 – 8) because donor-type defects introduced by I/I and/or donor impurities such as O or Si diffused from the protective overlayer during post-implantation annealing (PIA) 7) likely compensate holes.","PeriodicalId":441279,"journal":{"name":"2019 19th International Workshop on Junction Technology (IWJT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Workshop on Junction Technology (IWJT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IWJT.2019.8802886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
GaN is one of the promising candidates for the use in high-power electronic devices 1) operating at high frequencies, and normally-off GaN-based transistors on freestanding (FS) GaN substrates with low specific on-state resistances (~1.0 mΩ•cm 2) and high off-state breakdown voltage (>1.7 kV) have been demonstrated. 2 – 4) One of the challenging issues for producing such devices at low cost is the control of conductivity type and conductivity at designated segments using an ion-implantation (I/I) technique. Especially, p-type doping by Mg-I/I has been difficult 5 – 8) because donor-type defects introduced by I/I and/or donor impurities such as O or Si diffused from the protective overlayer during post-implantation annealing (PIA) 7) likely compensate holes.