A study of insulated and passivated gate technology for InP FETs

W. Lee, A. Iliadis, E. Martín, M. Mattingley, O. Aina
{"title":"A study of insulated and passivated gate technology for InP FETs","authors":"W. Lee, A. Iliadis, E. Martín, M. Mattingley, O. Aina","doi":"10.1109/ICIPRM.1990.203032","DOIUrl":null,"url":null,"abstract":"The effects of using a new surface passivation technique prior to PECVD SiO/sub 2/ deposition were studied, and the performance of the devices was correlated with the state of the interface at the gate electrode. Devices with gates made using the passivation only, passivation and subsequent SiO/sub 2/ deposition, and SiO/sub 2/ deposition without passivation were studied for a uniformly doped n-channel InP FET. The unpassivated SiO/sub 2/ insulated gates produced the lowest transconductance (g/sub m/) values: passivation prior to SiO/sub 2/ deposition improved the characteristics of the devices and increased g/sub m/ significantly. The passivated enhanced barrier gates produced the best characteristics and the highest transconductances consistently. In general the enhanced barrier gates demonstrated twice as high transconductance values as the SiO/sub 2/ insulated gates.<<ETX>>","PeriodicalId":138960,"journal":{"name":"International Conference on Indium Phosphide and Related Materials","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Indium Phosphide and Related Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.1990.203032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of using a new surface passivation technique prior to PECVD SiO/sub 2/ deposition were studied, and the performance of the devices was correlated with the state of the interface at the gate electrode. Devices with gates made using the passivation only, passivation and subsequent SiO/sub 2/ deposition, and SiO/sub 2/ deposition without passivation were studied for a uniformly doped n-channel InP FET. The unpassivated SiO/sub 2/ insulated gates produced the lowest transconductance (g/sub m/) values: passivation prior to SiO/sub 2/ deposition improved the characteristics of the devices and increased g/sub m/ significantly. The passivated enhanced barrier gates produced the best characteristics and the highest transconductances consistently. In general the enhanced barrier gates demonstrated twice as high transconductance values as the SiO/sub 2/ insulated gates.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InP场效应管绝缘钝化栅技术的研究
研究了在PECVD SiO/sub - 2/沉积前使用一种新的表面钝化技术对器件性能的影响,并将器件性能与栅电极界面状态相关联。研究了均匀掺杂n沟道InP场效应管中仅钝化、钝化后的SiO/sub 2/沉积和未钝化的SiO/sub 2/沉积制备的栅极器件。未钝化的SiO/sub - 2/绝缘栅极产生最低的跨导(g/sub - m/)值:在SiO/sub - 2/沉积之前钝化改善了器件的特性并显着提高了g/sub - m/。钝化增强势垒闸具有最佳的特性和最高的跨导率。总的来说,增强势垒栅极的跨导值是SiO/sub - 2/绝缘栅极的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expertise, optimisation and control of InP and related technologies by scanning photoluminescence measurements Dislocation density after S-diffusion into p-type InP substrates Surface recombination and high efficiency in InP solar cells Molecular beam epitaxial growth techniques for graded-composition InGaAlAs/InP alloys Submicron double heterojunction strained InAlAs/InGaAs HEMTs: an experimental study of DC and microwave properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1