George T. Wang, K. Sapkota, Albert Talin, F. Léonard, B. Gunning, G. Vizkelethy
{"title":"Ultra-low Voltage GaN Vacuum Nanoelectronics","authors":"George T. Wang, K. Sapkota, Albert Talin, F. Léonard, B. Gunning, G. Vizkelethy","doi":"10.1109/csw55288.2022.9930455","DOIUrl":null,"url":null,"abstract":"The III-nitride semiconductors are attractive for on-chip, solid-state vacuum nanoelectronics, having high thermal and chemical stability, low electron affinity, and high breakdown fields. Here we report top-down fabricated, lateral gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with ultra-low turn-on voltages down to ~0.24 V, and stable high field emission currents, tested up to several microamps for single-emitter devices. We present gap-size and pressure dependent studies which provide insights into the design of future nanogap vacuum electron devices. The vacuum nanodiodes also show high resistance to damage from 2.5 MeV proton exposure. Preliminary results on the fabrication and characteristics of lateral GaN nano vacuum transistors will also be presented. The results show promise for a new class of robust, integrated, III-nitride based vacuum nanoelectronics.","PeriodicalId":382443,"journal":{"name":"2022 Compound Semiconductor Week (CSW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Compound Semiconductor Week (CSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csw55288.2022.9930455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The III-nitride semiconductors are attractive for on-chip, solid-state vacuum nanoelectronics, having high thermal and chemical stability, low electron affinity, and high breakdown fields. Here we report top-down fabricated, lateral gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with ultra-low turn-on voltages down to ~0.24 V, and stable high field emission currents, tested up to several microamps for single-emitter devices. We present gap-size and pressure dependent studies which provide insights into the design of future nanogap vacuum electron devices. The vacuum nanodiodes also show high resistance to damage from 2.5 MeV proton exposure. Preliminary results on the fabrication and characteristics of lateral GaN nano vacuum transistors will also be presented. The results show promise for a new class of robust, integrated, III-nitride based vacuum nanoelectronics.
iii -氮化物半导体具有高热稳定性和化学稳定性、低电子亲和性和高击穿场等特点,是片上固态真空纳米电子学研究的热点。本文报道了自顶向下制造的横向氮化镓(GaN)纳米级真空电子二极管,该二极管可在空气中工作,具有低至~0.24 V的超低导通电压和稳定的高场发射电流,在单发射极器件上测试了高达几微安的电流。我们提出了间隙大小和压力相关的研究,为未来纳米间隙真空电子器件的设计提供了见解。真空纳米二极管还显示出对2.5 MeV质子暴露的高抗损伤性。本文还将介绍横向氮化镓纳米真空晶体管的制备和特性的初步结果。研究结果显示了一种新型的鲁棒、集成、iii -氮化物基真空纳米电子学的前景。