Masked Autoencoder for ECG Representation Learning

Shunxiang Yang, Cheng Lian, Zhigang Zeng
{"title":"Masked Autoencoder for ECG Representation Learning","authors":"Shunxiang Yang, Cheng Lian, Zhigang Zeng","doi":"10.1109/ICIST55546.2022.9926900","DOIUrl":null,"url":null,"abstract":"In recent years, self-supervised methods have been widely used in representation learning for electrocardiogram (ECG), but most of the existing methods are based on contrastive learning. Contrastive learning methods usually rely on a large number of negative sample pairs and data augmentation. In this paper, we propose a masked autoencoder-based ECG representation learning model. Our approach is to mask the original ECG signal with a high ratio and then use the autoencoder to reconstruct the original ECG signal. To obtain better ECG features, our model not only extracts local features of ECG using multi-scale convolution, but also global features of ECG using transformer. Our model first pre-trains on the ECG datasets and then fine-tunes on each ECG classification task. Experimental results show that our model outperforms the extant SOTA models for self-supervised learning.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, self-supervised methods have been widely used in representation learning for electrocardiogram (ECG), but most of the existing methods are based on contrastive learning. Contrastive learning methods usually rely on a large number of negative sample pairs and data augmentation. In this paper, we propose a masked autoencoder-based ECG representation learning model. Our approach is to mask the original ECG signal with a high ratio and then use the autoencoder to reconstruct the original ECG signal. To obtain better ECG features, our model not only extracts local features of ECG using multi-scale convolution, but also global features of ECG using transformer. Our model first pre-trains on the ECG datasets and then fine-tunes on each ECG classification task. Experimental results show that our model outperforms the extant SOTA models for self-supervised learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于心电表征学习的掩码自编码器
近年来,自监督方法在心电图表征学习中得到了广泛的应用,但现有的方法大多基于对比学习。对比学习方法通常依赖于大量的负样本对和数据扩充。本文提出了一种基于掩模自编码器的心电表征学习模型。我们的方法是对原始心电信号进行高比例的掩码,然后利用自编码器对原始心电信号进行重构。为了获得更好的心电特征,我们的模型既利用多尺度卷积提取心电局部特征,又利用变压器提取心电全局特征。我们的模型首先对心电数据集进行预训练,然后对每个心电分类任务进行微调。实验结果表明,该模型在自监督学习方面优于现有的SOTA模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Marine Aquaculture Information Extraction from Optical Remote Sensing Images via MDOAU2-net A hybrid intelligent system for assisting low-vision people with over-the-counter medication Practical Adaptive Event-triggered Finite-time Stabilization for A Class of Second-order Systems Neurodynamics-based Iteratively Reweighted Convex Optimization for Sparse Signal Reconstruction A novel energy carbon emission codes based carbon efficiency evaluation method for enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1