A new performance driven placement method with the Elmore delay model for row based VLSIs

T. Koide, M. Ono, S. Wakabayashi, Y. Nishimaru
{"title":"A new performance driven placement method with the Elmore delay model for row based VLSIs","authors":"T. Koide, M. Ono, S. Wakabayashi, Y. Nishimaru","doi":"10.1109/ASPDAC.1995.486252","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new performance driven placement method based on path delay constraint approach for large standard cell layout. The proposed method consists of three phases and uses the Elmore delay model to model interconnection delay precisely in each phase. In the first phase, initial placement is performed by an efficient performance driven mincut partitioning method. Next, an iterative improvement method by nonlinear programming improves the layout. The improvement is formulated as the problem of minimizing the total wire length subject to critical path delays. Finally, row assignment considering timing constraint is performed. From the experimental results, the proposed method is much better than RITUAL in point of the maximal violation ratio, the total wire length, and the cut size, and is more effective in the interconnection delay model and its extendability.","PeriodicalId":119232,"journal":{"name":"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1995.486252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we present a new performance driven placement method based on path delay constraint approach for large standard cell layout. The proposed method consists of three phases and uses the Elmore delay model to model interconnection delay precisely in each phase. In the first phase, initial placement is performed by an efficient performance driven mincut partitioning method. Next, an iterative improvement method by nonlinear programming improves the layout. The improvement is formulated as the problem of minimizing the total wire length subject to critical path delays. Finally, row assignment considering timing constraint is performed. From the experimental results, the proposed method is much better than RITUAL in point of the maximal violation ratio, the total wire length, and the cut size, and is more effective in the interconnection delay model and its extendability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Elmore延迟模型的行型vlsi性能驱动放置新方法
本文提出了一种基于路径延迟约束的性能驱动的大型标准单元布局方法。该方法分为三个阶段,采用Elmore延迟模型对每个阶段的互连延迟进行精确建模。在第一阶段,初始放置由高效的性能驱动的最小分割方法执行。其次,采用非线性规划迭代改进方法对布局进行改进。改进被表述为最小化受关键路径延迟影响的总导线长度的问题。最后,进行考虑时间约束的行分配。实验结果表明,该方法在最大违和率、总导线长度和切割尺寸方面均优于RITUAL,在互连延迟模型及其可扩展性方面更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending pitchmatching algorithms to layouts with multiple grid constraints Routing space estimation and safe assignment for macro cell placement Formal verification of pipelined and superscalar processors Test pattern embedding in sequential circuits through cellular automata Automatic verification of memory systems which service their requests out of order
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1