{"title":"Convolutional neural networks for predicting MGMT methylation status in glioblastoma patients","authors":"F. Sassi, D. Silva","doi":"10.5753/eniac.2022.227334","DOIUrl":null,"url":null,"abstract":"A metilação do gene MGMT determina o sucesso do tratamento quimioterápico de tumores cerebrais conhecidos como glioblastomas. Este trabalho explora quatro técnicas recentes, com os melhores desempenhos reportados na literatura, para classificação do status do gene MGMT em pacientes com glioblastomas, visando a comparação dos resultados em uma mesma base de dados pública e de elevada qualidade. São investigadas abordagens baseadas em extração de features radiômicas e baseadas em redes neurais convolucionais, tanto para classificação 2D/3D quanto para segmentação semântica. Nenhuma das abordagens testadas demonstrou significativa capacidade de classificação, com valores de ROC-AUC variando de 56,44% a 65,02%.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A metilação do gene MGMT determina o sucesso do tratamento quimioterápico de tumores cerebrais conhecidos como glioblastomas. Este trabalho explora quatro técnicas recentes, com os melhores desempenhos reportados na literatura, para classificação do status do gene MGMT em pacientes com glioblastomas, visando a comparação dos resultados em uma mesma base de dados pública e de elevada qualidade. São investigadas abordagens baseadas em extração de features radiômicas e baseadas em redes neurais convolucionais, tanto para classificação 2D/3D quanto para segmentação semântica. Nenhuma das abordagens testadas demonstrou significativa capacidade de classificação, com valores de ROC-AUC variando de 56,44% a 65,02%.