2-Phase Series Capacitor Synchronous Rectifier in Active Clamp Forward Converter

Katsuhiro Hata, Sadanori Suzuki, Kenichi Watanabe, Kenichi Nagayoshi, M. Takamiya
{"title":"2-Phase Series Capacitor Synchronous Rectifier in Active Clamp Forward Converter","authors":"Katsuhiro Hata, Sadanori Suzuki, Kenichi Watanabe, Kenichi Nagayoshi, M. Takamiya","doi":"10.1109/APEC43580.2023.10131436","DOIUrl":null,"url":null,"abstract":"A 2-phase series capacitor synchronous rectifier (SC-SR) in active clamp forward (ACF) converters is proposed to solve the inductor cooling problems caused by the recent trend of increasing the output current. The proposed 2-phase SC-SR can achieve the interleaved operation by adding only one flying capacitor to the 2-parallel conventional SRs without increasing the number of the primary circuit elements and transformer. Furthermore, the proposed 2-phase SC-SR can achieve the automatic inductor current balancing, which helps distribute the heat evenly in the two inductors. In the measurement at 140 V -to-5 V conversion, the peak efficiency of the ACF converters with the proposed 2-phase SC-SR and conventional SR was 90.3 % and 85.9 % at 28 AOUT, respectively, resulting in the improvement in efficiency by 4.4 %. In addition, the interleaved operation of the proposed 2-phase SC-SR reduced the output current ripple from 10.8 A to 6.4 A compared to the conventional SR at 40 AOUT. The current imbalance between the two output inductors of the proposed 2-phase SC-SR was less than 10% under heavy load even without any control or compensation, demonstrating the practicability of the proposed 2-phase SC-SR in ACF converters.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A 2-phase series capacitor synchronous rectifier (SC-SR) in active clamp forward (ACF) converters is proposed to solve the inductor cooling problems caused by the recent trend of increasing the output current. The proposed 2-phase SC-SR can achieve the interleaved operation by adding only one flying capacitor to the 2-parallel conventional SRs without increasing the number of the primary circuit elements and transformer. Furthermore, the proposed 2-phase SC-SR can achieve the automatic inductor current balancing, which helps distribute the heat evenly in the two inductors. In the measurement at 140 V -to-5 V conversion, the peak efficiency of the ACF converters with the proposed 2-phase SC-SR and conventional SR was 90.3 % and 85.9 % at 28 AOUT, respectively, resulting in the improvement in efficiency by 4.4 %. In addition, the interleaved operation of the proposed 2-phase SC-SR reduced the output current ripple from 10.8 A to 6.4 A compared to the conventional SR at 40 AOUT. The current imbalance between the two output inductors of the proposed 2-phase SC-SR was less than 10% under heavy load even without any control or compensation, demonstrating the practicability of the proposed 2-phase SC-SR in ACF converters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有源箝位正激变换器中的2相串联电容同步整流器
为解决当前变换器输出电流不断增大所带来的电感冷却问题,提出了一种用于有源箝位变换器的2相串联电容同步整流器(SC-SR)。所提出的两相SC-SR在不增加一次电路元件和变压器数量的情况下,只需在2并联的传统sr上增加一个飞行电容器,即可实现交错运行。此外,所提出的两相SC-SR可以实现电感电流的自动平衡,有助于在两个电感中均匀地分配热量。在140 V -5 V转换测试中,采用两相SC-SR和常规SR的ACF转换器在28约out时的峰值效率分别为90.3%和85.9%,效率提高了4.4%。此外,与传统SR相比,所提出的2相SC-SR的交错操作将输出电流纹波从10.8 A降低到6.4 A,约为40。在不进行任何控制和补偿的情况下,该2相SC-SR的两个输出电感之间的电流不平衡小于10%,证明了该2相SC-SR在ACF变换器中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Front-end Monitoring Scheme for Inductive Power Transfer Systems Based on Random Forest Regression An MPC based Power Management Method for Renewable Energy Hydrogen based DC Microgrids Overview of Machine Learning-Enabled Battery State Estimation Methods Ultra-Wideband Unidirectional Reset-Less Rogowski Coil Switch Current Sensor Topology for High-Frequency DC-DC Power Converters Common Source Inductance Compensation Technique for Dynamic Current Balancing in SiC MOSFETs Parallel Operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1