J. Mehta, I. Abid, J. Bassaler, J. Pernot, P. Ferrandis, S. Rennesson, T. Ngo, M. Nemoz, S. Tamariz, Y. Cordier, F. Semond, F. Medjdoub
{"title":"Towards high buffer breakdown field and high temperature stability AlGaN channel HEMTs on silicon substrate","authors":"J. Mehta, I. Abid, J. Bassaler, J. Pernot, P. Ferrandis, S. Rennesson, T. Ngo, M. Nemoz, S. Tamariz, Y. Cordier, F. Semond, F. Medjdoub","doi":"10.1109/CSW55288.2022.9930430","DOIUrl":null,"url":null,"abstract":"The rapidly increasing power demand, downsizing of power electronics and material specific performance limitation of silicon have led to the development of AlGaN/GaN heterostructures for high power applications. In this frame, emerging AlxGa1-xN channel based heterostructures show promising features for the next generation of power electronics. In this work, we propose the study of breakdown field variation through the AlGaN channel HEMTs-on-Silicon with various Al composition. The fabricated devices exhibited remarkable buffer breakdown electric field > 2.5 MV/cm for sub-micron heterostructures grown on silicon substrate. Furthermore, we also experimentally demonstrate that Al-rich AlGaN channel enables both boosting the 3-terminal transistor breakdown voltage and benefiting from superior thermal stability.","PeriodicalId":382443,"journal":{"name":"2022 Compound Semiconductor Week (CSW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Compound Semiconductor Week (CSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSW55288.2022.9930430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rapidly increasing power demand, downsizing of power electronics and material specific performance limitation of silicon have led to the development of AlGaN/GaN heterostructures for high power applications. In this frame, emerging AlxGa1-xN channel based heterostructures show promising features for the next generation of power electronics. In this work, we propose the study of breakdown field variation through the AlGaN channel HEMTs-on-Silicon with various Al composition. The fabricated devices exhibited remarkable buffer breakdown electric field > 2.5 MV/cm for sub-micron heterostructures grown on silicon substrate. Furthermore, we also experimentally demonstrate that Al-rich AlGaN channel enables both boosting the 3-terminal transistor breakdown voltage and benefiting from superior thermal stability.