K. Banerjee, Sheng-Chih Lin, A. Keshavarzi, S. Narendra, V. De
{"title":"A self-consistent junction temperature estimation methodology for nanometer scale ICs with implications for performance and thermal management","authors":"K. Banerjee, Sheng-Chih Lin, A. Keshavarzi, S. Narendra, V. De","doi":"10.1109/IEDM.2003.1269421","DOIUrl":null,"url":null,"abstract":"Accurate estimation of the silicon junction (or die) temperature in high-end microprocessors is crucial for various performance analyses and also for chip-level thermal management. This work introduces for the first time, the notion of self-consistency in estimating the die temperature for sub-100 nm CMOS technologies by taking into account various electrothermal couplings between supply voltage, operating frequency, power dissipation and die temperature. It also comprehends chip-level reliability constraints and the impact of employing various packaging and cooling solutions in an integrated manner. The self-consistent solutions of die temperature are shown to have significant implications for evaluating various power-performance-reliability-cooling cost tradeoffs and can be used to optimize the performance of nanoscale ICs.","PeriodicalId":344286,"journal":{"name":"IEEE International Electron Devices Meeting 2003","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Electron Devices Meeting 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2003.1269421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61
Abstract
Accurate estimation of the silicon junction (or die) temperature in high-end microprocessors is crucial for various performance analyses and also for chip-level thermal management. This work introduces for the first time, the notion of self-consistency in estimating the die temperature for sub-100 nm CMOS technologies by taking into account various electrothermal couplings between supply voltage, operating frequency, power dissipation and die temperature. It also comprehends chip-level reliability constraints and the impact of employing various packaging and cooling solutions in an integrated manner. The self-consistent solutions of die temperature are shown to have significant implications for evaluating various power-performance-reliability-cooling cost tradeoffs and can be used to optimize the performance of nanoscale ICs.